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ABSTRACT
Social networks have become the de facto online resource for people
to share, comment on and be informed about events pertinent to
their interests and livelihood, ranging from road tra�c or an illness
to concerts and earthquakes, to economics and politics. �is has
been the driving force behind research endeavors that analyze such
data. In this paper, we focus on how Content Networks can help
us identify events e�ectively. Content Networks incorporate both
structural and content-related information of a social network in
a uni�ed way, at the same time, bringing together two disparate
lines of research: graph-based and content-based event discovery
in social media. We model interactions of two types of nodes, users
and content, and introduce an algorithm that builds heterogeneous,
dynamic graphs, in addition to revealing content links in the net-
work’s structure. By linking similar content nodes and tracking
connected components over time, we can e�ectively identify di�er-
ent types of events. Our evaluation on social media streaming data
suggests that our approach outperforms state-of-the-art techniques,
while showcasing the signi�cance of hidden links to the quality of
the results.

1 INTRODUCTION
Event detection in social media has a�racted a lot of a�ention
during the last few years due to the spread of social networks (e.g.,
Facebook, LinkedIn) and content sharing applications (e.g., Youtube,
Flickr). To this end, a lot of e�ort has been put by the research
community and a multitude of techniques have been developed
targeting applications with social and commercial impact. Success
stories of the application of event detection techniques can be found
in a variety of domains [1, 3, 13, 15, 16].
Related Work. �ere are two main lines of research in the �eld:
a) content-based detection, that tackles the problem by identifying
novel topics in a stream of text [1, 6, 8, 9, 18], and b) structure-based
techniques that model a social network as a graph based on the
interactions between users and either track signi�cant changes
in time or look for very active sub-graphs [2, 4, 5, 10–12, 14]. On
the one hand, content-based techniques perform poorly in case of
events that cause increased interactions within the community. On
the other hand, structure-based methods ignore content altogether
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(tweets, messages, articles) and may, therefore, miss some vital
a�ributes like topics discussed and sentiment expressed.

Our approach, LiCNo1, (Linking Content Nodes) �lls this gap by
utilizing a novel representation that considers both the content and
the structure of a social network. More speci�cally, we model the
streaming data as a dynamic, heterogeneous graph. Our approach
treats large connected components of this graph as indicators of
events. �e intuition is that when there are a lot of users who
either directly interact with each other (as seen with the network
structure) or, indirectly, talk about similar topics (based on the text
similarity), then these users form large connected components.

Our results show that LiCNo, taking advantage of the network
structure and content, is able to track e�ectively and e�ciently
various types of events. On top of a be�er predictive performance,
LiCNo detects multiple events per time window, instead of �nding
anomalous time windows [11]. Each of these events has a descrip-
tion and a duration. Additionally, LiCNo is independent of the
way the stream is split into time windows because it does not only
contain links between similar content nodes, but also between sim-
ilar connected components over time. Finally, LiCNo is memory
e�cient since it tracks only graph’s summary information and does
not maintain node-speci�c statistics as in other approaches [4, 12].

�e contributions of this paper can be summarized as follows:
A) Network Representation: We introduce a novel representa-
tion of a network as a dynamic heterogeneous graph, the Content
Network. �e utility of such a graph in other tasks has been recently
discussed in the literature [4, 17].
B)Revealing Hidden Links: We provide an algorithm that identi-
�es hidden links in Content Networks by connecting similar content
nodes utilizing neural word embeddings.
C) Event Detection: We present an algorithm for detecting events
by tracking large connected components of Content Networks over
time. Our results demonstrate, that we are able to e�ectively iden-
tify events compared to widely used event detection techniques.

2 PROBLEM STATEMENT AND SOLUTION
In this section, we introduce some basic notation to help us present
our research objective. We proceed with the description of our
proposed technique to address event detection in social media.
De�nition 1 (Snapshot Graph) A snapshot graph is a static het-
erogeneous graph Gt = (Vt ,Et ), at time t . Vt = {V(0,t ) ∪ . . . ∪
V(m−1,t )} is a set ofm ≥ 1 di�erent types of nodes sets, whereV(j,t )
is the set of nodes of type j . Et is a set of edges that connect nodes
inVt , with Et ⊆ Vt ×Vt .

Figure 1 shows an example of a snapshot graph, with two (m = 2)
types of nodes: users (yellow circles) and content (blue rectangles).

1Reproducibility Note: Datasets and source code will be at: h�p:// cgi.di.uoa.gr/
∼antoniasar/LiCNo/
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Figure 1: Example of a snapshot graph in Twitter.

Edges between node types are labeled with their semantics. Nodes
can have a�ributes, e.g., language, age, location, etc, with di�erent
node types having di�erent a�ributes. We do not currently utilize
that information, but plan to investigate its importance as part of
our ongoing work.
De�nition 2 (Content Network) A Content Network is a dynamic
heterogeneous graph G, comprised of a sequence of snapshot
graphs over consecutive, discrete time windows. Formally, G =
{Gt |t = 1, . . . , tmax }, whereGi is the i-th snapshot graph, observed
during the i-th time window.

A time window can be as low as 1 second – or even lower – or
as big as a year. An example of a Content Network in four time
windows is shown in Figure 2. As we can see from the �gure, edges
are formed only between nodes of each individual snapshot graph.
Problem De�nition. (Event Detection in Content Networks) Given
a Content Network G, our goal is to identify a set of M events E =
e0, . . . , eM−1, where each event ej is represented by its description
dj and its duration tend, j − tstar t, j . An event is a topic that a�racts
considerable a�ention compared to the norm.

�erefore, an event is a triplet, ej = (dj , tend, j , tstar t, j ), and
an event detection technique needs to report such triplets. �e
proposed de�nition supports multiple events during the same time
window. �e de�nition also covers events that are not explosive in
nature, i.e., do not become spontaneously popular; rather, it allows
for a topic to gradually gain popularity over time, supporting events
that span across snapshot graphs.

2.1 LiCNo
LiCNo builds on the premise that important events will a�ract a
lot of a�ention, proxied in a social se�ing by the coming together
of multiple nodes. For this reason, it tracks connected components
(CC) in the Content Network and treats them as event indicators.
CCs are established by linking nodes that a) interact with each
other, or, b) are similar.
Building the Content Network. �e �rst step of LiCNo is to link
nodes according to the domain’s semantics. In a social network
se�ing, we have two di�erent node types: content and user. We
connect a user node with a content node, if the user posted the con-
tent. We also add a link between two user nodes, if one mentioned /
replied to the other. Other domains may follow di�erent semantics
under which nodes should be immediately connected [17].
Revealing Hidden Links. �e next step of LiCNo is to reveal hid-
den links, by connecting similar content nodes. �is is an important
step, and novelty of our technique, because it brings together nodes
that focus on the same topic but are disconnected (e.g., political
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Figure 2: Tracking events over time. Let’s assume that |vlCC |
= 9 and |lCC | = 3. LiCNo tracks two vlCCs, Event 1 in t0 and
Event 3 in t3. �e three lCCs in t1, t2 and in t3 are similar, with
total size 13, and they form one more event (Event 2).

opponents, opposing team fans, strangers with common tastes). In
Fig. 1, hidden links correspond to the orange dashed links.

As we describe in Algorithm 1, we reveal hidden links by �rst
extracting neural network embeddings [7] of a content node, based
on terms of its text. �en, we augment the text of each content node
with the most similar words of the node’s initial terms. A�er that,
we calculate the tf-idf embeddings and the pairwise cosine similarity
between content nodes. If the similarity between two content nodes
exceeds a prede�ned threshold we add an edge between them.
Identifying Events. At this stage, we have built our Content
Network and revealed its hidden links. We now need to run our
event detection approach, which must operate on a snapshot graph
Gt . �is is done as follows. We collect all distinct CCs found in Gt ,
i.e.,CCi ∈ Gt , i ∈ {1,p}. We then run each componentCCi through
the function h() shown below, which returns 1 if the component is
anomalous, or 0 otherwise:

h(CCi ) =
{
1, if |CCi | > avg(|CCj |) + θ × std(|CCj |),∀CCj ∈ Gt .

0, otherwise.

where avg(|CCj |) and std(|CCj |) are the (overall) average size and
standard deviation, respectively, of all CCs inGt , whereas θ is the
detection parameter. In other words, CCi is anomalous if it is θ
standard deviations larger than the average CC in that snapshot.

Components that were marked anomalous by the previous step
are termed large Connected Components (lCC). Using the set of

Algorithm 1 RevealHiddenLinks
Input: A snapshot graph Gt = (Vt , Et ), where Vt = Vc,t ∪Vu,t and
Vc,t : content-nodes and Vu,t : user-nodes, a similarity threshold ϕ , a
number of words to extend the text N .
Output: Snapshot Graph Gt with hidden links

1: Procedure enrich(text, N ):
2: w2v = model.Word2Vec(); textEnriched=∅
3: for token in text do
4: //Add top N most similar words to text
5: textEnriched += token+w2v.getSimilar(token, N )
6: return textEnriched
7: Procedure revealHiddenLinks(Gt , N , ϕ):
8: for ci , c j in Vc,t do
9: textEni = enrich(ci .text, N ), textEnj = enrich(c j .text, N )
10: if cosineSim(t�df(textEni ), t�df(textEnj )) > ϕ then
11: add edge (ci , c j ) to Gt

12: return Gt



lCCs, we rerun the anomaly detection step described above and
obtain the components that are found anomalous when the baseline
is set by the other lCCs. We call these very large Connected Com-
ponents, denoted by vlCC . Such components are strong indicators
of events, because of their abnormal size even when compared to
the lCCs. As a result, they are reported immediately as events, with
the start and end time being these of the oldest and most recent
content nodes in the vlCC , respectively. �e description of that
event constitutes of the most impactful tokens in the content nodes,
such as most frequent hashtags, mentions or entities.
Extending Events through Time. Due to our time discretization,
it is likely for an event to cross time window boundaries. However,
the corresponding vlCC may never form because the nodes of the
component are not all part of the same Gt . To address this short-
coming, we focus on adjacent time windows and try to merge lCCs
of the currentGt that did not become vlCCs with remaining lCCs
from Gt−1. �e process for merging is the same as when revealing
hidden links, but now we add links between the similar content
nodes of the candidate lCCs. Once lCCs are connected, they are
checked against the threshold used to �nd vlCCs in the currentGt ,
and are �agged (or not) as events accordingly. �is way, compo-
nents of the current snapshot graph Gt are given priority in being
reported, while we make up for events that were disadvantaged
because of the time windows split. �ose lCCs fromGt−1 that were
not merged with an lCC from Gt are discarded. An example of
merged lCCs that spans 3 time windows (Event 2) is in Fig. 2.
Filtering. For each time window, LiCNo automatically �lters two
types ofvlCCs that are not events: a) components of spammessages
(messages where a user posts a lot of information in a small time
frame in order to draw a�ention), b) components representing
blacklist incidents (messages that users post in a short period of time
and do not provide useful information). For example, some spam
messages are: ‘please, check out my fashion blog’ or ‘please follow me,
i’m your biggest fan @JustinBieber’. CCs that are formed by spam
messages have a star-structure and can be easily �ltered. Examples
of blacklist messages are ‘goodmorning’ or ‘happy birthday’ wishes.
Complexity Analysis. �e complexity of LiCNo is O(n2 |V|),
where n is the size of Vt and V is the size of the vocabulary of
terms in content nodes, which is constant. Here we omit the proofs
due to lack of space. In Sec. 3.1, we demonstrate the e�ciency of
LiCNo in practice, despite the theoretical worst case bounds.

3 EXPERIMENTS
For our experiments, we collected tweets via the streaming Twi�er
API, between Nov 29 to Dec 09, 2013. We focused on tweets posted
from London, UK, for which we used the API’s bounding box �lter-
ing mechanism. Users and Tweets are the two node types of our
Content Network. �ere are 69K unique users and 556K tweets over
that period. We generate snapshot graphs from that data using a
15-minute time window, for a total of 940 snapshot graphs. Tweets
fall in a snapshot graph according to their posting time, linked
to the user who posted it. Additional edges are added between
users who reply to each other within that snapshot. Following this
process, and once hidden links are revealed with Algorithm 1, there
are 559K edges in our Content Network.

Obtaining the Ground Truth. One main challenge in event de-
tection is the lack of ground truth. In our case, we automatically
obtained ground truth from Wikipedia2 and other online sources
for events such as Premier League games and popular TV shows,
spanning the same period of time of our collected dataset.
Methods. We consider the following techniques:
- Activity Detector. �is method identi�es events when an unex-
pected volume of messages is observed. To account for di�erences
in volume pa�erns throughout a day, we compute the average and
standard deviation for each 3-hour segment of a 24-hour cycle. �en,
an event is reported when the volume exceeds the corresponding
average plus θ times the standard deviation.
- Structure Components. A graph-based version of LiCNo using the
same technique of tracking lCCs but no similarity linking.
- Content Components. A content-based version of LiCNo using the
same technique of tracking lCCs but using only content nodes.
- SELECT-H.A state of the art technique using ensembles of anomaly
detectors [12]. Due to space, we consider only the best variant.
- LiCNo: �e technique presented in Section 2.
- LiCNo (tf-idf): A variation of LiCNo, using tf-idf vectors, but no
neural network embeddings.
Evaluation Metrics. Our evaluation consists of two parts. �e
�rst focuses on the importance of the hidden links: We generate
a vector GT of length equal to the number of time windows of
our dataset. GT contains binary values, where GTi = 1 means an
event occurred during the i-th time window, and 0 otherwise. We
opt for a binary vector as some baselines (e.g. structural ones) can
only report the existence or absence of an event. Similarly, each
evaluated method produces a binary vector M , |M | = |GT |, with
similar semantics. UsingGT andM , we compute for each method
Precision, Recall and F-score. �e second part compares LiCNo
against a state-of-the-art technique that does event ranking. We
provide more details for this comparison in Section 3.2.
Hardware & So�ware Setup. We run the experiments on a ma-
chine with Intel Core i7-5820K CPU, 16 GB RAM and 64-bit Linux
OS. LiCNo is in Python 2.7. SELECT-H is available in Matlab.

3.1 Event Detection Results
In Table 1(top section), we present the performance of all detec-
tion methods on the Twi�er dataset. LiCNo demonstrates the best
Precision and F-score overall. It is marginally second in Recall to
Structure Components, which has a much lower Precision, and is
di�erent from LiCNo in that it does not consider hidden links. �is
clearly validates our idea for linking similar nodes.

Fig. 3 shows how well LiCNo’s reported events align with the
ground truth across time. �is qualitatively shows the performance
of LiCNo beyond the binary vector evaluation. Also, we observe
that methods output larger duration for events such as soccer games,
since post-game TV shows discuss the highlights of the game.
Scalability. Our theoretical analysis showed a high, worst-case
complexity for LiCNo. For this reason, we evaluate its e�ciency in a
more realistic setup. From our data, we randomly sample 720 nodes
over a very short duration of time (<1min), which we replicate in
powers of two (2×, 4×, 8×). We then run LiCNo and measure the
time taken to process all the data (Fig. 4 (le�)). We also performed

2h�p://en.wikipedia.org/wiki/Portal:Current events
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Event Detection
Method Precision Recall F-score
Activity Detector 0.33 0.70 0.45
Structure Components 0.29 0.74 0.41
Content Components 0.39 0.49 0.43
LiCNo 0.46 0.73 0.57
Event Ranking
Method APrec ARec AF-Score Run Time
LiCNo (tf-idf) 0.65 0.69 0.67 259 sec
LiCNo (w2v) 0.5 0.61 0.54 22733 sec
SELECT-H 0.3 0.31 0.30 24746 sec

Table 1: Predictive performance in the Twitter data

a long-running experiment, by selecting a full week, replicating
it and appending it to the previous one, for a total duration of up
to a year. �e gray bars in Fig. 4 (right) show the time needed to
process the dataset, while the red-do�ed line shows the number of
content nodes (tweets). �ese plots indicate that LiCNo has a more
linear-like behavior, rather than the theoretical quadratic one.
Sensitivity Analysis. In Figure 5, we report the F-measure while
varying the three main parameters of LiCNo, the similarity thresh-
old (ϕ), the detection threshold (θ ), and the number of words by
which we augment the content nodes (N ). We observe that the
number of words N plays li�le role to the performance LiCNo,
except for larger similarity thresholds ϕ. �e tf-idf variant is be�er
for low ϕ and θ values, but is also a lot more unstable and quickly
drops in performance. On the contrary, the w2v embeddings are
far more stable and outperform tf-idf in the long run.

3.2 Event Ranking Results
In this section, we compare LiCNo to the state-of-the-art SELECT-H
in the task of Event Ranking. To do so, we used a ranking variation
of LiCNo that sorts time windows according to the size of the
largest CC , when an event is discovered. Table 1 (bo�om) reports
Average Precision, Recall and F-score (APrec, ARec, AF-Score) of
the techniques. We observe that both versions of LiCNo outperform
SELECT-H. Unlike LiCNo, which reports ranked lists only when
it detects an event, SELECT-H ranks all time windows by how

Figure 3: LiCNo’s event triggers and their correlation with
the timestamps of ground truth events (green lines). Events
are noted as blue diamonds (exceed vlCC threshold - orange
horizontal line) and red diamonds (exceed lCC threshold and
connected in sequential time windows). Gray colored dia-
monds are CCs that are not considered as events by LiCNo.

Figure 4: Scalability : le�: varying volume per time window,
right: varying time period (constant volume per window)

Figure 5: F-measure when varying θ for similarity threshold
ϕ = 0.5 (le�) and ϕ = 0.6 (right)
anomalous they are, even when there is nothing to report. Such
behavior a�ects both recall and precision of SELECT-H negatively.
By excluding all time segments with no ground truth events, we
obtain an upper bound for the performance of SELECT-H: 0.57 AF-
Score, which is still lower than the best performing LiCNo variant.

4 CONCLUSIONS AND FUTUREWORK
We presented LiCNo, a method for event detection that considers
both the structure and the content information of a social network.
It tracks connected components through time and utilizes them as
event indicators. Our experimental evaluation on twi�er data shows
that LiCNo outperforms baselines and state-of-the-art approaches.
For future work we intend to work on sub-event discovery and to
study alternative techniques for semantic similarity in content.
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