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ABSTRACT
Applications targeting Smart Cities tackle common challenges, how-
ever solutions are seldom portable from one city to another due to
the heterogeneity of city ecosystems. A major obstacle involves
the di�erences in the levels of available information. In this demon-
stration we present REMI, a reusable elements framework to handle
varying degrees of information availability by design from two com-
plementary angles, namely graceful degradation (GRADE) and data
enrichment (DARE). In a nutshell, we develop reusable machine
learning black boxes for mining and aggregating streaming data, ei-
ther to infer missing data from available data, or to adapt expected
accuracy based on data availability. We illustrate the proposed
approach using tram data from the city of Warsaw.
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1 INTRODUCTION
Smart Cities provide an enticing use-case of Big Data event-based
methods and technologies [5], demonstrating how technology can
improve daily, as well as long-term, quality of life of inhabitants.
Urban data is produced by a large array of sources and can be
leveraged to detect disasters (e.g., car accident), monitor special
events (e.g., festivals ) or improve the city e�ciency (e.g., provide
delay predictions in public transportation) [1]. Since these issues
are common to practically any medium-to-large sized cities, any
solution should be as �exible as possible in terms of the available
data to allow portability despite the heterogeneity of di�erent city
ecosystems. A major obstacle to a high degree of portability in-
volves the di�erences in the levels of available information, given
the variety of data sources that are available in a particular city. It
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is worth noting that, while we focus on Smart Cities and Tra�c
data, similar concerns are common to many other application �elds
(e.g., Energy Management and Environmental Monitoring, etc.).

�e current main interest of urban environment researchers and
experts is the data processing element of the city data [9], i.e., how
to aggregate and process data from multiple sources [1, 2] that are
in general available in a streaming fashion. In this context, infor-
mation fusion is of signi�cant importance [10, 13]. For instance, [6]
merges satellite, electric utility and census data for early detection
of power outages. Another important element is the combination
of historical and real-time (dynamic) data [1, 11]. Finally, [7] points
out that urban platforms should be open, allowing citizens to easily
contribute and/or retrieve data to build applications. Our work is
complementary to the mentioned research e�orts, focusing on the
re-usability of urban data architectures and handling foreseen or
unforeseen data availability in smart cities.

As an example of a Smart City application, we focus on predicting
congestions in cities, based on historical and current data of public
transportation. We aim at smooth portability of tools, developed for
one city, to the data that is available in another. Our experience in
the INSIGHT1 and VaVeL2 European projects shows that deploying
an algorithm that was developed in one city (Dublin in this case),
in another (Warsaw), becomes at times impossible due to di�erent
levels of data availability. �erefore, it is clear that not taking into
account the information availability may most likely jeopardize the
generalization of any Big Data event-based systems. Even across
di�erent areas of the same city we may �nd di�erent levels of
availability. For instance, some sensors (measuring tra�c, capturing
video, etc.) may be accessible in a suburb while not being available
in another, due to either cost constraints or infrastructure failures.

In this demonstration we present REMI, a reusable elements
framework to handle varying degrees of information availability
by design from two complementary angles, namely graceful degra-
dation (GRADE) and data enrichment (DARE). In a nutshell, we
develop reusable machine learning black boxes for mining and
aggregating streaming data, either to infer missing data from avail-
able data, or to adapt expected accuracy based on data availability.
Being able to re-use these o�-the-shelve modules can consider-
ably speed-up the development of big data applications involving
streaming data. On top of that, this design supports fault tolerance
of smart city data architectures since it enables operation even
when information sources become unavailable.

1h�p://www.insight-ict.eu/
2h�p://www.vavel-project.eu/

http://www.insight-ict.eu/
http://www.vavel-project.eu/
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We showcase reusable elements in a transportation use-case, in
particular congestion analysis in the city of Warsaw based on event
recordings emi�ed by tram GPS system, the city road network, stop
positions and tram schedule.

�e rest of the paper is organized as follows. Section 2 explains
the basics of reusable elements. System architecture of REMI is
given in Section 3, followed by the details of the demonstration
(Section 4) and concluding remarks (Section 5).

2 REUSABLE ELEMENTS
Reusable elements should be designed to adapt to various infor-
mation levels, depending on the available data sources. �erefore,
prior to algorithmic solutions, we consider the layering of possible
information availability. �is involves identifying the minimum
data requirements, denoted layer L0, which is necessary to provide
a meaningful answer to the targeted problem and that can be safely
assumed to be available in any deployment se�ing. On top of layer
L0, one can design levels of increased information availability (lay-
ers Li , i > 0), adding new data sources that may be less available
or, alternatively, more expensive.

Figure 1 shows an implementation of the aforementioned infor-
mation layering approach, as applied to our transportation use-case
(further details in Section 3.1). We assume that the basic informa-
tion needed is a stream of trams’ GPS positioning, without which
it would be impossible to perform on-line spatio-temporal analysis.
At the next layer, we add the network of roads, which is o�en a
publicly available information. �e third layer introduces locations
of tram stations, and �nally in the last layer consider the schedule
(the planned arrival and departure times of trams into and from
stations). Note that the data that is o�en available in Smart Cities
complies to one of the aforementioned four levels of information.

Constructed on top of the information layering approach, the
REMI solution that we propose in this demo allows to seamlessly an-
alyze congestion given various information levels using (1) graceful
degradation and/or (2) data enrichment.

2.1 Graceful Degradation
�e graceful degradation (GRADE) approach involves decreasing
the accuracy of the output to cope with the unavailability of some
data sources. For each information layer, we replace the design of
an ad-hoc algorithmwith reusable elements. �e analysis algorithm
ALi at layer Li takes as input both the new data source in this layer
and the output of analysis algorithmALi−1 of layer Li−1 and re�nes
the output of ALi−1 given the new data. Each layer is also equipped
with a translator TLi that bridges between the layer algorithm

〈id, gps, ts〉 road network stops schedule

〈id, gps, ts〉 road network stops
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Figure 1: Layers of information availability.

output and the output interface that is shared by all layers. �e
error in analyzing congestion via GRADE stems from the lack of
information at layer Li .

Figure 2 illustrates the concept of graceful degradation using
Smart Cities data. Every layer performs congestion analysis that
re�nes the algorithm of the previous layer. For example, consider
the case of the �rst two layers from the beginning of the current
section: L0 (GPS locations of trams), and L1 (GPS locations of trams
combined with the road network). Algorithm AL0 is unaware of
the roads. Hence, it considers slowdowns in tram movements to
classify a set of trajectories (and sub-trajectories) as congestion.
Adding the road network on-top allows for a proper interpolation
of these locations into congested road segments.

2.2 Data Enrichment
An alternative approach to GRADE is data enrichment (DARE). In
DARE, we use the available data in Li to infer the next (missing)
layer Li+1. Unlike GRADE, the error when analyzing congestion
with DARE comes from the inherent inference inaccuracies (e.g.,
due to statistical errors) when moving from Li to Li+1 rather than
from unavailable information at layer Li .

As our �rst example of the DARE approach, we consider a sce-
nario where L0 information is available, i.e., GPS locations of trav-
eling trams are known over time, yet the road network is missing.
Here, one may apply techniques proposed in [4, 8] to infer an
approximate road map, which enables the application of AL1 .

As an additional example, consider the information required to
perform congestion analysis via AL2 . Speci�cally, AL2 requires the
availability of station locations. However, the available information
in L1 involves only GPS locations of trams over time, as well as the
road network. We may apply unsupervised learning to discover
points of interest (stations in our case) by employing techniques
from [3, 14]. Subsequently, one may apply AL2 for the desired
congestion analysis.

3 DEMONSTRATION FRAMEWORK
We now detail the demonstration framework. Speci�cally, we start
with the data model (Section 3.1), followed by the system’s archi-
tecture in Section 3.2.

3.1 Data Model
In this section, we present a model of the data sources we use to
produce a congestion analysis, as well as their di�erent degrees
of information availability. �e most basic layer of information
(Layer L0, cf., Figure 1) contains the GPS sensor readings from
Warsaw trams. �ese can be represented as a massive distributed
stream of tuples (i.e., events) σ = 〈t1, . . . , tj , . . . , tm〉, where each
tuple is a quadruple 〈id, line,дps, ts〉 encoding the identi�ers of
the tram id ∈ N+ and of the line line ∈ N+, the GPS location
дps ∈ P (where P = (lonд, lat) ∈ R+ × R+) and a timestamp
ts ∈ N+ (milliseconds from epoch). For the sake of simplicity, we
assume that σ has already gone through the classical data cleaning
steps (i.e., duplicates and outliers detection). It is worth noting that
pre�xes of σ of length j, denoted as σh(j), can be stored and used
for o�-line analysis, while the congestion analysis is performed on
the online stream σ .
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Figure 2: Reusable Elements: GRADE vs. DARE.

Figure 3: Demonstration Architecture.

�e next layer (Layer L1, cf., Figure 1) adds the network of roads
in Warsaw. In particular, we model this data as a function d :
P×P → R+ that returns the travel distance using the road network,
which is di�erent from bird’s �y distance, from one GPS position
to another.

�e third layer of information (Layer L2, cf., Figure 1) contains
the positions of the trams stops across the city. We model this
information as a function p : N+ × P → N+ ∪ {−1} that, given a
line identi�er and a GPS position, returns either the identi�er of
the stop or −1 if it is not a stop position.

�e top most layer (Layer L3, cf., Figure 1) adds the scheduled
arrival and departure time for each tram line. �e schedule is
modeled as a function s : N+ × N+ × N+ × N+ → N+ × N+, that
given a day (days from epoch), a line and stop identi�er and a time,
returns the expected arrival and departure time.

3.2 System Architecture
Figure 3 shows the general architecture of the demonstration. �e
additional data for Li≥1 is stored in databases, namely: Network

DB, Stop DB and Schedule DB. �e business logic wraps these
databases with the functions de�ned in the previous section. �e
stream σ of GPS readings is collected and pushed into a stream
processing framework (in this implementation we use Apache
Flink [12]).

�e source duplicates the stream that is (i) stored in a database
(Historical DB) (σh(j)) and (ii) forwarded into the the �rst layer
analysis algorithm AL0 . AL0 is split into o�-line (on top of the
Historical DB) and on-line analysis. �e former provide the tools
to the la�er to analyze (on-line) the incoming GPS readings. �e
analyzing algorithm for the following layers are simply pipelined,
and their output is processed by the translation operator before
reaching the Web server. It is worth noting that only one of the
dashed path is operational at any given time, depending on which
layer of information availability we want to display. Finally, the
GUI is based on aWeb page, displaying the city map with the results
of the congestion analysis.

4 DEMONSTRATION DETAILS
In this section we provide more details on the implementation of
the reusable elements (Figure 2) and how increasing the informa-
tion availability improves the accuracy of the congestion analysis
(Figure 4).
Layer L0 At layer L0, the analyzer AL0 uses a combination of clus-
tering algorithms and rule based pa�ern mining on location and
time on the pre�x σh(j) (previously) stored in the Historical
DB to extract and tune a set of rules that are then applied on the
on-line data. �en, AL0 takes as input the stream σ of sensors
readings and outputs a stream σAL0

of tuples 〈line, ts, дpsstar t ,
дpsend , delay〉 encoding the line identi�er, a timestamp, a start-
ing and ending gps positions as well as the delay between them.
Each of these tuples are the result of an aggregation over several
gps readings from the original σ stream. Translator TL0 computes
the speed observed between дpsstar t and дpsend on each tuple
of σL0 , and classi�es them into 3 degrees of congestion severity
(i.e., none, medium, high). �e output is a stream σTL0 of tuples
〈дpsstar t ,дpsend , conдestion, ts〉, which are ingested by the GUI
and shown on the map.
Layer L1 Layer L1 introduces the knowledge of the road network
stored in the Network DB and o�ered toAL1 as a distance function
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(a) Layer L0 (b) Layer L1 (c) Layer L2 (d) Layer L3

Figure 4: Example of a congestion map for increasing information availability.

d . �is functions allows us to re�ne the speed estimation produced
in layer L0. AL1 decorates the tuples of σAL0

with the e�ective
distance between дpsstar t and дpsend . Translator TL1 is identical
to TL0 except for using the e�ective distance in the speed calcula-
tion. In Figure 4a and 4b we can see that without the d function,
algorithm AL0 overestimates the slowdown cu�ing through the
turn.
Layer L2 �is layer �lters some false-negative in the output of L1
based on the stop information stored in the Stop DB and modeled
as the function p. AL2 reads the tuples of σAL1

and adjusts the
observed time interval when the дpsstar t and/or дpsend positions
correspond to a tram stop. AlgorithmAL1 classi�es two tram stops
as severely congested road segments (Figure 4b and 4c). Knowing
the position of tram stops through the p function, AL2 reduces the
congestion severity for these segments (Figure 4b and 4c).
Layer L3 Finally, leveraging the schedule information encoded
in function s and stored in Schedule DB, algorithm AL3 further
improves the congestion analysis by: (i) Adjusting the observed
time interval in the tuples of σAL2

with the exact expected waiting
time at the stops and (ii) decorating the output tuples with another
dimension in the congestion analysis, i.e., whether the congestion
is expected or not. In Figure 4d, AL3 reduces the severity of the
congestion on the segment knowing that this is a long stop and
shows that the congestion on the main road is expected (yellow
instead of orange).
Demo Description. In our Demo the user will be able to observe
on a map: real time information coming from the cities of Dublin
and Warsaw. Information includes tra�c sensor data, BUS/GPS
locations, etc. �e system automatically identi�es congestion issues
in both cities and displays them as alerts on the map by utilizing
information of multiple-levels. �e user will be able to activate or
de-activate the data feeds that the system utilizes and observe how
the accuracy of congestion detection varies.

5 CONCLUSION
�is demonstration presents and implements the reusable elements
architecture to handle, by design, the heterogeneity in informa-
tion availability increasing the portability of Big Data event-based
solution. �rough a transportation use-case based on public trans-
portation o�-line and on-line data from Warsaw, we demonstrate
how such an architecture is able to gracefully degrade the conges-
tion analysis given the available data sources.
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APPENDIX: SETUP AND REQUIREMENTS
�e demonstration requires a laptop that we will provide. If avail-
able, the demonstration would bene�t from an external monitor
provided by the organizers.

https://flink.apache.org/

	Abstract
	1 Introduction
	2 Reusable Elements
	2.1 Graceful Degradation
	2.2 Data Enrichment

	3 Demonstration Framework
	3.1 Data Model
	3.2 System Architecture

	4 Demonstration Details
	5 conclusion
	References

