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Abstract—In this paper we tackle the recently proposed prob-
lem of hidden streams. In many situations, the data stream that
we are interested in, is not directly accessible. Instead, part of the
data can be accessed only through applying filters (e.g. keyword
filtering). In fact this is the case of the most discussed social
stream today, Twitter. The problem in this case is how to retrieve
as many relevant documents as possible by applying the most
appropriate set of filters to the original stream and, at the same
time, respect a number of constrains (e.g. maximum number of
filters that can be applied). In this work we introduce a search
approach on a dynamic filter space. We utilize heterogeneous
filters (not only keywords) making no assumptions about the
attributes of the individual filters. We advance current research
by considering realistically hard constraints based on real-world
scenarios that require tracking of multiple dynamic topics. We
demonstrate the effectiveness of our approaches on a set of topics
of static and dynamic nature.

The development of the approach was motivated by a real
application. Our system is deployed in Dublin City’s Traffic
Management Center and allows the city officers to analyze large
sources of heterogeneous data and identify events related to traffic
as well as emergencies.

I. INTRODUCTION

Social media streams have been shown to provide a valuable
source of real-time information and insights into the physical
world in scenarios ranging from information dissemination and
coordination during a flood [12], earthquake response [11],
sport summarization [8] or traffic updates [1]. In most of these
applications, the challenge of identifying valuable relevant
content can be like finding the proverbial needle in a haystack.
Research has shown that this problem is particularly difficult
for short text messages like in Twitter, compared to longer
documents [5]. An additional challenge is the highly dynamic
nature of these streams. Adding to these many challenges, the
complete information stream is not directly available for many
social media architectures such as Twitter.

A motivational example. Let’s assume our analysis task is
the following:

Task 1. “Analyze the micro-blog stream of the city
of Dublin and identify as many tweets as possible
in real-time that talk about traffic issues in the road
network”.

I @paraicgallagher There was a collision before J9, now cleared. Those
are the delays.
I @LiveDrive the M50 collision has the N4 inbound backed up to
hermitage golf club . . .
I Stuck in traffic on the M50 and my plc interview is at half six ... I’m
gonna cry
I My bus has taken 40 minutes to get from Harolds Cross Road to
Aungier Street, I hate you . . .

TABLE I: Traffic tweets coming from Dublin identified by our
approach.

The output of our analysis should be a set of relevant tweets
reported by the citizens or authorities of Dublin. An example
of the desired output is displayed in Table I. In fact, these
are tweets identified by our method as described in later
Sections. This is a real world task inspired and funded by
the European Research Project INSIGHT (www.insight-ict.eu)
where managing traffic in emergency situations was a problem
of major importance.

Our method is implemented in a system that is deployed
(see Section VII) in Dublin City’s Traffic Control room.
Despite the fact that the motivation and the requirements were
problem-specific, our solution is generic and can be utilized
in similar cases.

This type of analysis necessitates the need for efficient
algorithms to mine the data that is available through the Twitter
API. However, the data stream that is accessible through the
API is constrained in the following ways:

- The output is originating from the original Twitter stream
but one has to apply a type of filtering on it (area based,
keyword based, user based, etc) in order to access the
data. By applying different filters, you get different sub-
streams.

- One can apply up to 400 keyword filters, up to 5000 user
filters and up to 25 location filters.

- Data volume generated by the application of filters is
bounded by a limit (currently close to 1% of the original
stream).

The above constraints are applied to the typical and most-
widely Twitter API usage. Full access of the stream is only
possible through a commercial license . Similar constraintsIEEE/ACM ASONAM 2016, August 18-21, 2016, San Francisco, CA, USA
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exist in other social media. Examples include Instagram, Flickr
and Reddit. Therefore the issue is not Twitter-specific.

Task 1 can be broken down into addressing the following
two problems: (i) Given a twitter stream and a maximum
set of filters that can be applied, our goal is to determine
an appropriate set of filters, such that, the number of tweets
that we find from an area of interest is maximized, (ii) train
a machine learning classifier, using a trustworthy stream, to
identify relevant tweets. In practice, often such trustworthy
streams exist for many areas and therefore we utilize them.

For the classifier part, there are a lot of knowledge discovery
challenges. Many of them have been addressed in the literature
[3]. However, in this paper we focus on the first part of the
problem: to identify as many relevant tweets as possible using
an appropriate set of filters and utilize the classifier in order to
select high quality content. We argue that feeding the classifier
with a richer stream will eventually have positive impact on the
number of true positives, precision, and recall without making
any adjustments to the classifier.

The contribution of this work can be summarized in the
following points:

- We present a new dynamic approach that analyzes and
extracts potentially useful filters (keywords, users, etc).
The method has the following advantages over the state of
the art: (a) it requires no apriori knowledge of precision,
recall or the overlap of the filters, (b) it takes advantage of
heterogeneous filters, (c) it updates the filters dynamically
adapting to new information, hence making it effective for
drifting topics, (d) it is suitable for problems with tight
constraints (e.g. low number of allowed filters).

- We evaluate our approach against the state-of-the-art on
datasets that we make available. This will enable the
repeatability of our experiments.

- We present two case studies of real world retrieval
problems. In contrast to the state of the art, our approach
solves both parts of the problem by: (a) enriching the
data stream by applying an appropriate set of filters, (b)
automatically building a classifier to identify which of the
items of the stream are relevant.

II. RELATED WORK

Information retrieved from Twitter requires the identification
of domain specific, topic relevant content. A combination of
queries must be constructed as part of the data collection
process. Typical solutions include keyword or hashtag queries,
following specific users or constructing a bounding box query
for the geographic location of interest. In order to retrieve and
monitor a topic of interest a combination of the about queries
may be used however a large amount of unrelated content
may also be returned. As a result, further filtering may also
be employed to discard unrelated content. Each step in this
process tends to be a hand crafted and customized solution in
order to satisfy the specific application area.

The Hotstream system consists of pre-defined search queries
such as #breakingnews that were used to retrieve Twitter
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Fig. 1: Hidden Streams & Information Retrieval. The goal is
to apply the proper set of filters to the Hidden Stream in order
to build a set of high quality sub-streams that will contain
relevant content.

messages, similar messages are then clustered in order to
identify emerging news stories [9].

Queries of specific focus may be used to first generate a
dataset used for training a classifier which can then be used
to filter the entire Twitter stream. Dan et. al. propose using
keyword based queries in order to generate a small sample
dataset which is then harnessed to create a reusable classifier
in order to identify related social TV messages [2]. [6] uses
hashtags as a label for specific topics. These labelled topic
specific tweets are then used to create a language model which
is then used to filter the entire Twitter stream.

To our knowledge Ruiz et. al. presented the first work
tackling the problem of hidden streams [10]. They defined
two variations, a static and a dynamic one. Having a set of
keywords identified by a classifier, the goal is to select the
best of them. These are keywords that lead to the maximum
number of retrieved documents under a set of constraints. The
problem is formulated as an optimization task and solved with
Greedy and Dynamic programming algorithms.

The differentiation and contribution of our work is that we
make no assumptions about the type of the filter (in [10], only
keyword-based filters are considered). In [10], the precision
and coverage (static case) of each keyword-filter are assumed
to be known. Our approach doesn’t require this information
and dynamically estimates keywords’ relevance. Finally, In
[10], the keywords to be explored are considered given. In
our approach, we dynamically extract relevant keywords as
well as users or suitable bounding boxes from the stream.

III. PROBLEM DEFINITION

The information retrieval task in Hidden Constrained Doc-
ument Streams is to collect as many relevant documents as
possible by applying a set of filters to the original (hidden)
stream and, at the same time, respect a set of constraints or
limitations defined by the system architecture or by the data
provider policy.
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Definition 1: Constrained Hidden Stream. A constrained
hidden stream D is a series of documents

D = {δ1, δ2, . . . , δn}

that has the following three properties.
P1. The originating stream is hidden.
P2. The number of filters that can be applied is limited.
P3. The aggregated volume of the resulting substreams is

bounded.
In this section, we explain the above properties in detail.

Hidden Stream. Documents δi in D can only be accessed
through filters. The application of a filter f to stream D leads
to a sub-stream d. In other words f(D,P ) = dP ⊂ D. Where
P is the set of parameters that uniquely define the filter f .
For example, a user-based filter can be defined as f(D,U)
where U is a set of users that the filter will track. The sub-
stream d in this case will contain items generated by users in
U . The size of the filter is the size of its parameter set (|P |).
Each substream di produces vi data volume per time unit (see
Figure 1).

Limited Number of Filters. The number of filters allowed is
constrained by an integer Φmax. In this work, we consider
heterogeneous filters of different types T1, . . . Tn. In this
context, the constraint can be defined as:

(Cfil):
∑n
i=1 |Ti| ≤ Φmax,

where |Ti| is the size (number of parameters) of all filters
of type i.

Bounded Data Volume. The sum of the returned documents
from all filters can not be over ∆max per window. Formally,
given that n filters are applied and produce d1, . . . , dn sub-
streams and each substream produces v1, . . . , vn data volume
per time unit, then the constraint can be written as:

(Cvol):
∑n
i=1 vi ≤ ∆max

Figure 1 illustrates a hidden stream D, the application of
n filters and the resulting substreams d1, ..., dn. The sample
stream is a random sample of the original stream. Such
functionally is available through the Twitter API.

Definition 2: Information Retrieval in Hidden Constrained
Document Streams. Given a hidden constrained document
stream D, and a topic of interest T , the task is to identify as
many relevant documents to T in D by applying a set of filters
f1, f2, . . . , fn to D. The filters and their resulting substreams
s1, s2, . . . , sn, should satisfy constraints Cvol and Cfil.

The dynamic version of the problem, where the filters in the
set can change over time while their number remains fixed, is
more important in a real setting since it requires incremental
discovery of keywords related to topics that might drift over
time. At the same time it is more difficult since it becomes
essential to avoid overloading the selected substreams with
popular keywords. To cope with these challenges we introduce
a method that explores the filter space in an on-line fashion
and, when available, utilizes trusted sources as stabilizers in

order not to be carried away by the dynamics of the social
network. Note that as a consequence we may have to monitor
a given topic with only a small number of filters, given that
the Twitter API imposes a hard constraint on the total number
of filters.

IV. DYNAMIC FILTERS (DYNHF)

The most common approach in retrieving relevant infor-
mation from a hidden stream is to apply a single filter. In our
task the most intuitive approach would be to apply a bounding
box filter (BoxSinF) on the hidden stream and then feed the
classifier with the resulted sub-stream. This approach, although
straight forward, limits the amount of information fed into the
classifier.

We build upon the common single filter approach by extend-
ing the information fed to the classifier by applying multiple
heterogeneous filters. On top of the bounding box filter we
utilized two additional streams. The first one, is a set of user
filters collecting tweets of a specific user group. The second
set of filters are keyword based.
We formulate our solution as search in the dynamic filter
space. Our search criterion is the number of relevant docu-
ments collected in the latest time window. The novelty of the
problem and the approach is that the space is dynamic since
new filters (e.g. keywords, users) are extracted continuously
from the stream while data are collected. Instead of solving a
static optimisation problem in each step, our algorithm defines
a heuristic local search in the space of possible filters. To
do this we provide a formal framework for defining the filter
space, and propose a search strategy in this space. A detailed
description can be found in Algorithm 1.
States. A state is a particular set of filters with their parameters
(Users, Keywords). Formally, Si = [f(1,i), . . . , f(1,N)], where
f(j,i) is the filter of type j as it is set up at state Si. What
differentiates one state from another is the parameters of the
filters. At Figure 2, we have two states in addition to the initial
one. Each state is defined by the settings of its filters and an
initial state S0 is required. To move from S0 to S2 a set of
different actions (operators) can be applied.

𝑆0 = [𝑓1, 𝑓2, … , 𝑓𝑁]
S0

S1

S2

𝑆1 = [𝑓1′, 𝑓2, … , 𝑓𝑁] …

𝑓𝑥 ′ 𝑆2 = [𝑓1, 𝑓2′, … , 𝑓𝑁]

𝑓2: U2 = {𝑢1}

𝑓2′: U2 = {𝑢1, 𝑢2}

Fig. 2: A state is a set of filters along with their operators
(users, keywords, locations). Moving through the dynamic
filter space requires the addition or removal of an operator.

Trustworthy Stream. The trustworthy stream is a subset of
the original stream that we know that it contains documents
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Algorithm 1: DynHF - Search in a Filter Space
Input: Hidden Stream (D), initial state (S0);
operator evaluation function evop(item, data);
heuristic function h(s), constraints Φmax,∆max

Result: for each window a state S
Set S = So = [f1, f2, . . . , fN ];
Closed set of states C = ∅;
Open set of states (frontier) A = [S0];
Priority list of operators O = ∅
while stream is active do

aggregate all di to Dw;
if reached Φmax or ∆max then

remove operators oi using evop(oi, Dw)
end
while window w do

apply filter operators in f1, . . . , fN of S to D;
collect substreams d1, . . . , dN ;

end
aggregate all di to Dw;
evaluate h(S,Dw);
put tuple < S, h(S,Dw) > to A (sorted);
Ow ← extract list of operators from Dw ;
evaluate all oi in Ow using evop(oi, Dw);
Put tuples < oi, evop(oi, Dw) > in O;
Sort O according to evop(oi, Dw);
onext ← top of O;
// move to Snext by applying onext to S
S ← onext(S)

end

related to the topic of interest. In practice, such a source
always available; for example, in our experiments, we leverage
such resources as traffic authorities’ Twitter accounts that are
used for public announcements. Taking advantage of such
streams improves the quality and flexibility of our system.
Note that the utilization of such a stream not only serves as a
good starting point (see Initial State), but, more importantly,
can be used to ameliorate the problem of focusing on only
very popular topics. This is achieved by updating the relevant
content classifier with data from the trustworthy stream. In
any case, the approach is fully functional even without such a
stream.
The Initial State. The initial state can be a randomly selected
state or a carefully selected one depending on the domain
knowledge available. In the case of Twitter for example, we
can consider setting the filters to follow accounts or keywords
that are relevant to the topic T or trustworthy accounts.
Extracting Action Operators. We consider as actions op-
erators the potential change of filter settings from one
state to another. This comes down to adding (or removing)
users/keywords from the attributes of one of the filters. For
example, in Figure 2, we observe that in order to move from
state S0 to S2 a user (u2) was added to the user-based filter U2.
In other words S2 is based on S0 but now f ′2 has a changed
parameter. The list of candidate operators must be dynamically
discovered since keywords, users, etc, are not predefined. For
each time step, we extract a new list of operators and we
evaluate them using an evaluation function evop. Operators
are maintained in an ordered list O. The evaluation function

is problem-dependent. When a state S reaches the limits ∆max

or Φmax the removal operation rmop removes inappropriate
operators according to evop score.
Fitness Function. This is the necessary function h that will
guide the algorithm through the search space evaluating the
states. Again, this function is problem-dependent.
Dynamic Search Space. It is important to note that the filter
search space is bounded by Φmax and ∆max. The algorithm
cannot reach any state that contains more filters than the limit
or create volume of data that exceeds the acceptable rate as
shown in Figure 3. The search space is dynamic since new
operators can be discovered (see the dotted lines in Figure 3).

S0

S1 S2

…

S3

S4

S5

…

…

S7 S8

S9

…

…

…

Φmax

Δmax

Fig. 3: The filter space. The coloured areas represent areas
of the space that satisfy one of the two constraints (∆max,
Φmax). States in the intersection satisfy both constraints.

This consideration of the dynamic properties of the search
space is not addressed by the state of the art. In [10], the
authors considered an optimization approach to set up a
static set of homogeneous (keyword) filters assuming that the
following information is known a priori: a) the initial pool of
keywords from which we have to select the optimal subset,
b) the utility of each one of these words in terms of precision
and overlap with other keywords, c) the volume that each
word generates. The requirement of this information makes
the approach not applicable to many cases where this type
of knowledge is not available or very costly to obtain. In
addition, we argue that these qualities are not static since the
information value of users and keywords might change from
time to time. In this context, the algorithm should constantly
update and adapt to any changes. Our approach calculates the
above filter qualities in a streaming fashion and discovers new
filters from the stream.

V. FRAMEWORK INSTANTIATION

In this section we present the necessary implementation deci-
sions required to put our framework into practice.
Relevant Content Classifier. We formulated the task of
automatically identifying traffic related tweets as a data clas-
sification task. This required a set of annotated tweets (with
labels ‘traffic-related’ or ‘other’). Unfortunately, such a dataset
is not publicly available. To overcome this issue and to avoid
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manually annotating tweets, we trained the classifier using
the tweets from the trustworthy stream assuming they are
are related to traffic issues. This classifier is periodically
updated using the trustworthy stream in order to capture topic
drifts. The classifier uses as features the TF-IDF weighted
term vectors of the tweets. The performance of the classifier
utilizing an SVM in terms of F-Measure was 0.72 with
precision / recall 0.63 and 0.84 respectively (based on a set
of ground-truth relevant tweets - see Section VI).

Terminology Note: Throughout the text we use the term rele-
vant tweets to indicate tweets that the classifier has identified
as positive for the class ‘traffic’. On the other hand we call
ground-truth relevant tweets, the tweets that were manually
annotated as ‘traffic related’ by human annotators. To evaluate
the suggested approaches we use both relevant and ground-
truth relevant tweets (see Section VI-A - Quality Assessment).

Initial State In our use case, the initial state was set to
be the trustworthy stream. A random state could also be
utilized with the downside of a slower learning rate. For our
case, the trustworthy stream originates from authority Twitter
accounts in Dublin that inform citizens on traffic issues. Such
sources are LiveDrive, AARoadWatch and Garda Traffic. For
the ‘Greek Politics’ use case (see Section VI-B) we utilized
the keywords ‘Greece’, ‘crisis’, ’government’.
Operators. The operators are the tools that enable moving
between states. For example, the operator “add user ux” would
add a user to a filter. One of the main advantages of the
dynamic approach is that operators are extracted incrementally
as the system receives new information from the stream.
Extracting Operators. Since we integrate heterogeneous fil-
ters to our framework, we need to define a different extraction
approach for each type of filter. For keyword filters, the
TextRank [7] algorithm is utilized. This algorithm creates a
keyword co-occurrence graph over the stream’s documents and
extracts the most influential keywords. The keywords with the
highest TextRank score are then evaluated according to the
relevance of their substreams at the most recent window w.
A keyword k applied to a hidden stream D as a filter will
generate a substream dk of tweets (containing this keyword).
The relevance of these tweets will be evaluated based on
the output of the traffic classifier (i.e. how many times the
classifier considered tweets in this substream as relevant).
More specifically, keyword relevance is defined as |Pw,k|

|Tw,k|
where Pw,k is the set of tweets classified as traffic related
by the classifier during window w and Tw,k is the number
tweets containing the keyword k. User Extraction can be rather
simple. New candidate users are the ones that tweeted during
the latest window.
Evaluating Operators. A ranked list of operators discovered
so far is maintained according to their evaluation scores
(see Algorithm 1). Evaluation of candidate operators (users,
keywords, etc) is vital for two parts of the approach: a)
prioritizing which operators will be tried next, b) removing
operators when one of the two limits (Φmax,∆max) has been

reached. In the first case, the top-ranked operator is selected
whereas in the second, the lowest ranked operator is removed.
The keyword filter evaluator defined as

evopk(k,Dw) = α
|Pk,w|
|Tk,w|

+ (1− α)e−γ(tc−tk)

It assigns a score to the sub-stream generated by a keyword
filter and utilizes two parameters capturing relevance and
temporal value.

The relevance factor is expressed as the ratio of the poten-
tially relevant tweets |Pk,w|, over the total number of tweets
|Tk,w| containing the keyword k during the window w. The
temporal activity factor considers the last appearance time tk
of keyword k and the current timestamp tc. The above formula:
a) penalizes keywords that appear only in the beginning of
the window, and b) favors the ones that appear at the end of
the window. Parameter γ was set empirically to 10−4 and α
to 0.5. The user evaluator evopu(u,Dw) = |Pu,w| considers
the number of potentially relevant tweets the user has posted
during the window.
Fitness Function. An evaluation criterion (heuristic) is nec-
essary to guide the dynamic search described in Algorithm 1.
The evaluation function (h) of a state S during a window w

is defined as h(S,Dw) =
|PS,Dw |

λ

|TS,w| .. PS,w is the number of
relevant tweets during window w using filters at state S. TS,w
is the total number of tweets collected during window w. If
the ratio h(Si,Dw)

h(Si−1,Dw) is greater than 1 the system will extract
operators from the current state Si. If not, it will backtrack to
the state with the highest fitness value h from the open set of
states (see Algorithm 1). Similar to α, λ controls how much
emphasis is given to the number of relevant tweets and the
two can be considered as one parameter. Higher values of λ
achieve higher Recall.

VI. EXPERIMENTAL EVALUATION

The goal of the experimental evaluation is to investigate the
utility of the dynamic exploration of our proposed approach
(DynHF).
Competitor Methods. In the experiments, in addition to our
proposed approach (DynHF), we include:

- DNOV-R / DNOV-K, are originally described in [10]. The
assumption is that the keywords are given a priori and
also that their precision is known. The algorithm utilizes
up to Φmax filters according to their precision trying
not to surpass ∆max rate limit. In our implementation,
the required keywords were selected similarly to [10],
using two days of data preceding the testing period. The
difference between DNOV-R and DNOV-K is that the first
targets precision whereas DNOV-K targets high recall.

A. Search in Dynamic Filter Spaces

DynHF aims to improve upon the two main disadvantages
of DNOV-R and DNOV-K: a) the requirement for a priori
knowledge of the quality of the filters, and b) the static filters
and static precision assumptions in an extremely dynamic
environment.
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The keyword filter limit was set to Φmax = 2, 5, 10. These
settings are intentionally selected in order to simulate real-
world cases where organizations need to capture multiple
topics. Hence, the allowed keywords per topic should be rather
small. For our use cases the allowed Twitter data rate was more
than enough hence, there was no point in studying the effect of
∆max. Preliminary experimentation showed that a good value
for DynHF’s λ and α is 2 and 0.8 respectivelly. Location and
user filter were not used in DynHF in order to fairly compare
with DNOV-R and DNOV-K that only utilize keywords.
Dataset Construction. In order to collect a dataset for the
experiments of this section we set-up crawlers that followed a
set of Dublin users (obtained via the method suggested in [4]),
keywords that appear in authority accounts related to traffic
(e.g. LiveDrive) and a bounding box set up in Dublin. All
these filters were applied for a period of approximately three
months (01/09/15 to 22/11/15) and the collection resulted in
a dataset of 1,105,748 tweets. We make this dataset available
at: http://www.insight-ict.eu/hiddenstreams/
Quality Assessment. Since we are working on an un-labeled
Twitter feed, we followed an unsupervised assessment strat-
egy. The evaluation of each method is based on the quality
of the sub-streams they generate that are forwarded to the
content classifier (see Figure 1). If the approach provides a
high-quality stream with lots of informative tweets, then the
classifier will be able to identify them. Hence, we asses the
quality of each approach by calculating the number of relevant
tweets as identified by the classifier (see note in Section V).
Eventually, some of our experiments are based on an annotated
subsets, hence Precision, is calculated based on ground truth
relevant tweets. For this section, in order to simplify the
language, we use the term ‘relevant tweets’ to describe the
tweets that were identified as positive by our classifier.

Results. Figure 4 presents the number of traffic relevant
tweets retrieved, as identified by the classifier, under different
Φmax values for the three month period. DynHF performs
better under all settings. When the allowed keywords are only
a few, it is very important to select the best combination for
that particular time window. Hence, DynHF is able to track
in real time what topics are discussed and retrieve relevant
content.
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Fig. 4: Relevant Tweets Identified in total by the three methods
for different values of Φmax.

This is also demonstrated in Figure 5, where the number

of identified tweets is presented with respect to time (with
Φmax = 10 where DNOV-R and DNOV-K perform best). We
observe that DynHF is consistently providing more relevant
tweets. As shown in this figure all peaks of the DynHF line are
related to an event that affected the traffic (floods, fire, etc).
In some cases however (like the ‘Truck Overturn’ accident)
generic keywords of DNOV-R and DNOV-K were sufficient to
capture the event. We calculated that from all tweets identified
by DynHF for Φmax = 5, 30% and 37% are novel tweets,
i.e. tweets that were not identified by DNOV-R and DNOV-K
respectively. The results are similar for other values of Φmax.

The number of keywords discovered by DynHF with respect
to time is presented in Figure 6. In a period of 20 days, our
method explored more than 150 traffic related keywords which
means that even in the context of this static topic (traffic)
there were drifts in some sub-concepts that was important to
be captured. In the next section, we explore a more dynamic
topic, where the benefit of our approach is even more evident.

A Note on Precision. In order to evaluate the quality of the
streams generated by the algorithms in terms of precision we
utilized a smaller annotated dataset. We only include DNOV-
R since DNOV-K targets recall. The annotation included 1600
tweets from 6am to 9pm during three days using Φmax = 5.
The days were selected from Figure 5, where the following
events occurred: i) Major Floods (11/09/15), ii) Port tunnel fire
(18/09/15), iii) Truck overturn at port tunnel (20/11/15). Table
II presents the results of this experiment. Stream Precision
(StrPR) is the ratio of ground-truth relevant tweets to the total
number of tweets returned by the filtering method. In the same
Table we have included the number of ground truth relevant
tweets (GTRel) found on the streams. What can be observed
is that DynHF retrieves 2.3 times more tweets with a 10%
drop in precision. Moreover, if higher precision is required,
then the user can adjust parameters α and λ (see Section V).
We also found that 63% of true positive tweets gathered from
DynHF are novel to DNOV-R.

DynHF DNOV-R
Date StrPr GTRel Tot StrPr GTRel Tot

11/09/15 0.68 280 412 0.82 111 135
18/09/15 0.63 268 425 0.7 112 160
20/11/15 0.62 208 335 0.78 104 133
Average 0.64 0.76

TABLE II: Stream precision (StrPr) and ground truth relevant
tweets (GTRel) during three days with major events.

B. Dynamic Topics

In order to demonstrate the potential of our approach we
studied an additional retrieval task where the topic of interest
is rather dynamic. The topic is ‘Greek Politics’ during a
period that there were many developments (June-July, 2015,
Referendum, Bail-out, etc).

We experimented using tweets written in English from June
20 to July 30, 2015. The dataset included 58 million tweets
(221 GB). We observe that DynHF has an advantage even
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Fig. 5: Relevant tweets per day identified during the three
months by all methods.
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Fig. 6: Keywords discovered from DynHF during the period
of the three months.

when only two keywords are allowed returning 154% more
relevant tweets that DNOV-R. In cases of major events like the
‘Referendum’ or ‘Payment Miss’ DynHF outperforms the rest
of the approaches by identifying and applying time-specific
keyword-filters. DynHF in less than a month explored more
than 100 keywords. This demonstrates again, the dynamic
nature of the topic under study. The experimental run on this
dataset required less than two hours on a four-core machine.

On Table III, we present some keywords discovered by
DynHF on four non overlapping periods. Before the announce-
ment of the referendum (Period 1 - until June 26) the keywords
look rather generic while after the announcement (Period 2
- 27 June) the surname of the prime minister of Greece
‘Tsipras’ is added to the keywords list along with the keyword
‘referendum’. Shortly after the Greece referendum (Period 3 -
until July 5) keywords ‘polls’ and ‘votes’ also appear on the
DynHF list due to the referendum outcome. Finally, in mid
July (Period 4 - July 15) due to the crisis in Syria, we observe
keywords like ‘refugees’ and ‘migrant’ capturing discussions
about refugees trying to pass to Europe through Greece. We
observe that these keywords are strongly related to unforeseen
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Fig. 7: Comparison of the three methods in terms of relevant
tweets discovered with respect to time.

political developments that a static method could not track.

Period 1 Period 2 Period 3 Period 4
crisis tsipras tsipras political

humanitarian translifeline referendum eurozone
political bailout defiant syriza
eurozone referendum polls refugees

correctness markets votes migrant

TABLE III: Examples of keywords discovered by DynHF on
the Greece politics use case.

VII. SYSTEM DEPLOYMENT, END USER
EVALUATION AND IMPACT

Deployment. The approach discussed in this paper (DynHF)
is implemented and utilized in a system deployed in Dublin
City’s Council (DCC) traffic control room since June 2015.
The system is called INSIGHT and it aids the personnel to
monitor events and emergencies happening in Dublin (Figure
8). Although Dublin collects a lot of information the operators
are not able to track all this data sources manually and identify
issues. INSIGHT analyzes a set of heterogeneous sources
like sensors measuring traffic volume in intersections, GPS
information from Buses and social media data (Twitter). The
system is deployed on an Intel i7, 3.4GHz, 8GB Ram.

The Twitter analysis component is responsible for analyzing
the twitter stream and identifying tweets discussing traffic
issues, emergencies, or floods (see Figure 9). On top of that,
the user can investigate identified relevant tweets (historical
and real time) and adjust the system’s parameters.
Evaluation - Setup. We run a two-day full evaluation of the
System at DCC. The process was set up in such way that we
evaluate the system’s features in terms of: a) functionality and
b) usability. Simply put, functionality relates to how the system
aids DCC employees achieving more than when using their
conventional workflow. Usability relates to how easy to use
and intuitive the system was. Note that the majority (95%) of
participants were not familiar with the system. A Training Step

577



Fig. 8: Multiple Monitors at DCC’s Traffic Control room. One
of the monitors displaying the INSIGHT system automatically
identifying events and emergencies.

Fig. 9: Twitter Analysis in INSIGHT. The system analyzes
tweets coming from the city, automatically inferring the lo-
cation when necessary[1] and raises alerts on the map. DCC
employees can investigate the event further or leave feedback.

preceded the evaluation by providing the participants a user
guide and a set of video tutorials1. 27 employees participated
in the evaluation and filled in a questionnaire.
Results. Based on their questionnaire answers DCC employees
found the system and its Twitter analysis component very
helpful. More specifically they found that social media analysis
is extremely valuable in comparison to the analysis of the
other sensors since: a) Citizens through their tweets publish
information about the event in natural language and hence
it is easier to comprehend, b) Citizens are actually ‘moving
social sensors’ and are spread throughout the city covering
areas where static sensors are not available.

On top of the above feedback we requested from the DCC
team to examine independently Tweets list that the INSIGHT
Twitter analysis identified as ‘events’ during the evaluation
period (Traffic / Flood / Fire related). Results are shown in
Table IV where we see the high accuracy of the system (91%).

VIII. CONCLUSIONS AND FUTURE WORK

This paper deals with the problem of information retrieval in
hidden constrained data streams. We formulate the problem
as a search problem in a dynamic filter space. We compare
our approach with a single filter baseline, a static alternative

1www.insight-ict.eu/hiddenstreams/

Tweets identified by DynHF 179
Confirmed Relevant Tweets 91%
Confirmed Relevant Tweets in Dublin 63%

TABLE IV: Accuracy of the Twitter analysis component

and a method recently proposed in the literature. Through
experimental evaluation and two real-world use cases, we
demonstrate that the dynamic nature of our approach (DynHF)
is able to incrementally extract high quality filters and there-
fore generate sub-streams with relevant content. The method
is implemented, deployed and evaluated in Dublin’s Traffic
Control Room. It currently aids operators to detect events and
emergencies in the City by studying the identified tweets.

This is an exciting field and an unexplored area. We noted
many items for our research agenda. For example, it would
be interesting to conduct a more exhaustive study of various
fitness functions as well as search strategies and apply the
same principle in other domains.
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