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Abstract—In recent years we are witnessing a growing interest
in identifying various aspects affecting the quality of life in smart
cities, such as traffic congestion and pollution levels, in order to
provide services that enhance the public welfare. In smart cities,
sensor infrastructures are deployed around the city combined
with data analytics, to monitor and detect in real-time possible
anomalies or events of interest. One major challenge that arise
in smart-cities is to evaluate the health state of an urban city
using heterogeneous multi-source urban data, i.e., pollution and
traffic data. Existing works in the literature are limited since
they analyze a single source of data, either inferring the air
quality or estimating traffic congestion. However, none of these
works considers both data sources in concert for estimating
the city’s health state. In this work, we present “HELIoS”
(HEalthy LIving Smart), a framework that combines multiple
heterogeneous sources of data, i.e., urban traffic and pollution
data, to diagnose the health state of urban areas in a smart
city. Our experimental evaluation provides valuable insights into
identifying the health state of an urban area, and shows that our
approach is both practical and efficient.

I. INTRODUCTION

With the rapid increase in urbanization, cities are becoming
more complex to live. It is estimated, that, by 2050 64.1%
of the developing world and 85% of the developed world,
will be urbanized, with more than 6 billion people living
in cities. However, living in cities can be quite challenging
for individuals, impacting their quality of life. Smart cities
typically deploy sensor infrastructures combined with data
analytics to monitor and detect in real-time possible anomalies
or events of interest in the city (i.e. traffic accidents, air
pollution, etc.). Sensor devices are becoming part of the
smart city infrastructure and these can be either i) embedded
in the city infrastructure (e.g., SCATS sensors and CCTV
cameras), ii) mobile (e.g., smartphones or mobile apps) or iii)
static (e.g. pollution monitoring stations) in order to provide
services that enhance the public welfare and the citizens’
quality of life. Such services may relate to traffic management,
environmental monitoring, smart transportation, housekeeping
information, etc. Smart city systems typically produce vast
amounts of data during their operation, allowing us to study,
understand and model several parameters of the city such as
traffic patterns, human crowd behavior and dynamics, and air
pollution diffusion across the city, as illustrated in Figure 1.

Fig. 1. Typical example of pollution in urban areas.

Thus, digital technologies are changing the way in which
smart cities are planned and monitored. Probably the most
challenging question is how to evaluate the health state of an
urban area on both spatial and temporal dimensions consider-
ing several factors such as the traffic conditions and air pollu-
tion across the city [1]. Monitoring air pollution emissions and
concentrations and delivering this information to the citizens
indicating the city’s health state can have significant benefit on
human habits and in the way people choose to live, behave and
interact within their city environment. For instance, children,
old aged or people performing physical exercises, such as
bicycling or jogging, would benefit from such information for
example to avoid leaving their homes or going near congested
areas, where the pollution levels are high or citizens can be
encouraged to use alternative transport solutions and drivers
can avoid traffic congested areas that may result in increased
levels of stress and aggression[2]. Therefore, identifying and
extracting the city’s health state using heterogeneous types of
urban data plays a significant role in enhancing the public
welfare.

Prior studies have analyzed the city living problem from
various perspectives. For instance, in [3], the authors studied
the optimal location for a new retail store using geographic
criteria, where features are formulated according to the types
and density of nearby places, and user mobility criteria, which
includes transitions between venues or the incoming flow of
mobile users from distant areas. There has been work focusing
on inferring traffic information based on either crowdsourcing
schemes [4], [5] or loop sensor networks [6], [7], [8], and on
estimating the environmental footprint of a city using urban
data[9]. However, these studies are limited as they focus on978-1-5386-4725-7/18/$31.00 c©2018 IEEE



individual aspects of the city living problem (i.e., traffic or air
pollution) and do not consider multiple types of urban data,
which is the focus of this paper.

In this paper, we aim at evaluating the health state of an
urban city using heterogeneous multi-source urban data, i.e.,
pollution and traffic data. We have developed this work, in
the context of the VaVeL project1 that is currently deployed
in the City of Dublin and aims at monitoring diverse data
coming from city-wide infrastructures and recognize in real-
time abnormal events of interest such as traffic conditions and
the air pollution levels. In the VaVeL system, traffic data are
received from various voluminous sources, including cameras
CCTV, static loop sensors and bus sensors that measure the
traffic flow, the data are possibly noisy, with missing values
and measurement errors. In Dublin the air quality is measured
city-wide through 6 stations deployed in the city center and
its suburban areas to provide air pollution information to its
citizens. Air quality does not stand still, it changes hourly,
with large variations in quality even from neighborhood to
neighborhood. Thus, evaluating the health state of the city
using air pollution and traffic data is a challenging task: (a)
although urban data are available to smart city authorities, it is
very difficult for human operators to monitor this vast amount
of information, (b) traffic data are available at significantly
higher resolution compared to pollution data, and (c) iden-
tifying hidden connections between these two heterogeneous
sources of urban data on both spatial and temporal is not a
trivial task, since they may differ in sampling frequencies.
Therefore, a more systematic and comprehensive analysis is
required to understand and model how pollution emissions
in the city are diffused in correlation with the road traffic
density as measured by sensors deployed city-wide in order
to efficiently diagnose the city’s health state.

Contributions. In this work, we propose “HELIoS”, a
framework that identifies the city’s health state by combining
heterogeneous sources of urban data. Our contributions are
summarized as follows:

• We propose “HELIoS”, a scheme that aims at identifying
the city’s health state using traffic and pollution data.

• By conducting an extensive analysis on both data sources,
we illustrate the hidden connections between the different
types of data.

• We show how these different sources of data can be
appropriately combined to build a regression model that
diagnoses the health level of city areas.

The rest of the paper is structured as follows: In section 2
we motivate our problem and present our System Model. In
section 3 we describe our approach. In section 4 we present
our experimental evaluation. Section 5 describes related work
and finally, section 6, concludes our paper with lessons learnt
from this work.

1http://www.vavel-project.eu/

II. PRELIMINARIES

In this section we first provide a brief motivation of our
approach and then describe our system model.

A. Motivation

There has been extensive work in the literature studying
how traffic congestion affects human health and well-being [2],
[10], [11]. Their findings illustrate that dealing with heavy
traffic does not just make people late for work or dinner; living
with constant traffic congestion also has negative consequences
on their health. Even healthy people can experience health
impacts from polluted air including respiratory irritation or
breathing difficulties during exercise or outdoor activities[12].
Therefore, it is important to study both factors to diagnose the
city’s health state.

Single-Source Data. Current body of research is focusing
on analyzing data from single source feeds such as traffic
flows [13], [14], [15]. These approaches rely on capturing
mobility traces in order to estimate the traffic congestion and
its location and extend in a smart-city area. For instance, geo-
tagged social media data[16] is able to provide an indication
about the area in which a traffic event occurs, but is not
adequate to provide information regarding its environmental
effect. Furthermore, detecting outliers in traffic flows[17] can
reveal the area of a possible traffic event, but it says nothing
about the degree at which the pollution affects the human
health. In our previous work[18], we have focused on the
traffic monitoring problem, and in this work, we extend our
approach with analyzing multiple data sources for inferring
the city health levels.

Multiple Sources of Data. Recent works in the literature
utilize heterogeneous sources of data to infer human mobil-
ity [19], [20]. For instance, combining GPS probe data and
tweets as in [20] may help in identifying a traffic congestion
event. Furthermore, combining multiple sources of data, such
as transit and cellphone data as in [19], it is possible to infer
traffic congested areas. However, both studies do not provide
any insights into inferring environmental pollution and as a
result the city’s health level. Moreover, in [21], the authors
aim at analyzing the air quality, but their approach is not able
to identify the city’s health, although it is indeed impacted by
traffic congestion. It is clear that these approaches are limited
and could be used only to understand one of the two factors,
but not both factors and their interplay. Our thesis is, that,
pollution information can be used in combination with traffic
data to infer the city’s health level and this is the focus of the
work we present in this paper.

B. System model

In smart cities, heterogeneous types of sensors are employed
to facilitate the collection and processing of information re-
lated to traffic conditions as well as environmental conditions
around the city. The work presented in this paper is conducted
in the context of the Dublin City. Dublin is a typical example
of a smart city that utilizes sensors for monitoring the traffic
state across the city and the levels of hazardous pollutants,



such the nitrogen dioxide (NO2)[7]. In order to achieve that,
a variety of heterogeneous data sources are exploited including
the following: (i) SCATS sensors which are embedded on the
road and monitor real-time traffic density, (ii) GPS traces from
sensors embedded on buses, (iii) the LiveDrive radio where
users can report traffic conditions, (iv) pedestrian counters and
(v) CCTV cameras that display the traffic conditions in real-
time. For instance, the VaVeL Project instruments the above
diverse data feeds in order to facilitate traffic monitoring.

SCATS System: SCATS (Sydney Coordinated Adaptive
Traffic System) is an innovative computerized traffic man-
agement system developed by Roads and Maritime Services
(RMS) Australia. SCATS sensors are fixed magnetic sensors
deployed on intersections to measure various road character-
istics such as the traffic flow and the degree of saturation of
roads’ lanes. In Dublin city, each SCATS sensor transmits a
new record with a sampling frequency of one minute. Each
one of these records comprises the following information: <
timestamp tl of the measurement, the sensor’s unique IDi,
degree of saturation measured at sensor IDi at timestamp tl
denoted as dsi,tl , and traffic flow measurement at IDi sensor
at timestamp tl denoted as fi,tl >.

At the moment, in Dublin city, there are approximately
557 SCATS controlled intersections and 3402 different SCATS
sensors deployed throughout the road network. Each SCATS
sensor monitors the traffic condition of a specific lane of a
junction. The geospatial coordinates of SCATS sensors are
presented in Figure 2. The degree of saturation illustrates
how much a road’s lane is utilized, while the traffic flow
measures the vehicles’ volume divided by the highest volume
that has been measured in a sliding window of a week2. Both
metrics are essential for understanding the specific conditions
of the road network at any time. More formally, the degree of
saturation dsi,tl is defined as:

dsi,tl =
green(tl)− (Ttotal − q(tl) · sp)

green(tl)
(1)

where green(tl) denotes the duration of the green traffic light,
Ttotal is the total time where no vehicle passes the sensor, q(tl)
the time between vehicles while the sensor is discharging and
sp the number of spaces between cars. The traffic flow fi,tl
is defined as:

fi,tl = dsi,tl · green(tl) ·
veh

3600
(2)

where veh
3600 is the number of vehicles per second at maximum

flow. In this work we focus on the measurement of the degree
of saturation, denoted as dsi,tl , as it is more reliable and
informative than the traffic flow. The degree of saturation
captures better the congestion of a road since, for instance,
the traffic flow may have a low value almost equal to zero,
but the road is congested because of a traffic event.

2http://dublinked.com/datastore/datasets/dataset-274.php

Pollution Monitoring: In smart-cities the pollution levels
are measured over time from six monitoring stations installed
around the city that show results for hourly Pollutants Nitrogen
Dioxide (NO2), Nitrogen Monoxide (NO) and Particulate
Matter (PM). Each station is characterized by the following:
< (latj , lonj), AR >, where (latj , lonj) correspond to its
geospatial coordinates of the station, and AR is the area of
coverage in a radius R around the geospatial coordinates of
the station. In Figure 3 we illustrate the pollution monitoring
stations in Dublin City. To estimate the pollution levels we use
the pollution concentration metric; this is a value that denotes
the concentration of a specific pollutant in the air. In Dublin,
the pollution concentration measurements are generated on a
per-hour sampling basis and are appropriately stored by the
Dublin City Council. Moreover, this concentration value can
be described using models that incorporate several parameters
such as the emission factors of the pollutant, the earth topology
etc. It has been shown[22] that the pollution concentration of
an area A, CA,t, at a specific time t can be described using a
Gaussian plume model. More formally,

CA,t =
Q(t)

4πKx
e
−y2u
4Kx [

1

e
(z−H)2u

4Kx

+
1

e
(z+H)2u

4Kx

], x, y, z ∈ A (3)

Health Level Index: Our objective is to diagnose the
health level of a city area using a metric that captures both
environmental and traffic conditions. Since both sources are
different, we need to define a normalized metric that fuses
information from both sources in order to identify the health
level. Therefore, we define the health level index of a city
area A at time tl as the product form of the level of pollution
of the area multiplied by the level of congestion of the area.
Specifically, we normalize the pollution concentration divided
by the value annotating hazardous health concerns Cmax and
we multiply it with the normalized average value of the degree
of saturation for all sensors in area A (we divide by the degree
of saturation value dsmax

A that annotates the occurrence of a
traffic jam (equal to 160 for the Dublin case)). More formally,
the health level index of an area A at time tl is defined as
follows:

HLIA,tl = (
CA,tl

Cmax
) · (

∑
∀i∈A dsi,tl
|A| · 1

dsmax
A

) (4)

Problem Definition: Given a set of labels B that char-
acterize the health levels of a given area AR, and the two
heterogeneous data sources T (for traffic) and P (for pollu-
tion), the problem is to accurately classify the city area into
health levels, specifically, learn a function M that decides the
health level of the city area AR. More formally,

M(T ,P, AR) −→ B (5)

III. HELIOS APPROACH

In this section, we present our approach to solve the
problem. Our goal is twofold: first, we aim at identifying the
level of traffic and air pollution across a city, and then build
a regression model to identify the city’s health state.



Fig. 2. The SCATS sensors scattered in Dublin’s city center. Fig. 3. Pollution sensors locations at the city of Dublin.
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(b) Balleyfermot

 0
 20
 40
 60
 80

 100
 120
 140
 160

00:00
01:00
02:00
03:00
04:00
05:00
06:00
07:00
08:00
09:00
10:00
11:00
12:00
13:00
14:00
15:00
16:00
17:00
18:00
19:00
20:00
21:00
22:00
23:00

D
eg

re
e 

of
 S

at
ur

at
io

n

Hour of day

Degree of Saturation
Mean DoS

(c) Coleraine
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Fig. 4. Hourly Degree of Saturation (DoS) on typical days for districts of
Dublin City
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Fig. 5. Monthly median of pollution emissions for the available
pollution sensors in the city of Dublin.
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A. SCATS data analysis

In this section, we discuss our findings from the analysis
of SCATS data. We first present the traffic density in Dublin
City. In Figures 4a, 4b, 4c, 4d, 4e and 4f we illustrate the
degree of saturation on typical weekdays on a 24hour basis
for various districts around the city. We have chosen the
degree of saturation as the appropriate metric to illustrate the
traffic conditions, since it provides more meaningful infor-
mation regarding the traffic state of the road network. For
the purpose of the analysis, we draw the average degree of
saturation for all sensors within a radius R = 0.5km from
the pollution monitoring station of each district on a per-hour
sampling basis, along with the minimum and the max value

observed as an envelope. Our goal was to identify how the
degree of saturation varies over time and whether this can be
described using a known distribution. Despite the fact that the
different districts present different hourly mean and variance,
we observe that the degree of saturation measurements can be
approximated on an hourly basis using known distributions,
such as the Gaussian Distribution. Thus, we may conclude
that on typical days, the degree of saturation is expected to
follow a known distribution and therefore it can be calculated
using the statistical properties of this distribution.

B. Pollution data analysis

We next focus on the analysis of the pollution data. We
analyzed pollution data from the Dublin City for six different
city districts (the locations of the monitoring stations are
shown in Figure 3).

More specifically, in Figure 5, we illustrate the Nitrogen
Dioxide (NO2) values as they are measured over time at the
pollution stations in Dublin. We observe there are different
pollution levels across the different regions of the city. Larger
NO2 emissions are observed at Winetavern area, while Bal-
leyfermot and Dunlaoghaire areas exhibit lower emissions.
We also observe that seasonality is present in the NO2

measurements. The emission levels during the summer months
are smaller than those in the winter months. This is happening
since the pollution levels are not only related to the number of
vehicles that are moving in the city, but they are also related
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Fig. 7. Pollution Concentration over the day on typical days for the main districts of Dublin City
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(d) Winetavern: Weekends

Fig. 8. Pollution in Dublin’s city center districts.

to the temperature. Larger pollution rates are observed during
the months with lower temperatures. In Figure 6 we present
the median value for NO2 emissions for the Coleraine Area of
Dublin (a district located near the city center). As can be seen,
the pollution levels during the night hours are considerably
lower than the daily values. Finally from May till August
the pollution level is considerably lower than the rest of the
year. In Figures 7a, 7b, 7c, 7d, 7e and 7f, we illustrate the
NO2 emissions for different hours of day for the different
districts on January. As we can observe the pollution varies
significantly over the day. During the night hours (21:00 -
05:00) the pollution levels are significant lower than the daily

values. This is explained due to the fact that fewer vehicles
travel during the night and also fewer companies operate at
night. Finally, we observe that the pollution measurements do
not deviate considerably per hour.

Last, we chose two two city center districts (Winetavern
and Coleraine) and analyzed their NO2 concentrations. In
Figures 8a, 8b, 8c and 8d, we draw the average hourly
concentration of the pollutant for both weekdays and week-
ends. As we may observe, there is a significant difference
between weekdays and weekends regarding the pollutant’s
concentration levels. This verifies our initial intuition that
citizens rely on their cars for their daily commutes.

C. HELIoS Fusion-based Approach

In this section, we describe how we build our regression
model for the NO2 measurements using the SCATS data.
We first describe how we aggregate the SCATS data in order
to have similar shape with the environmental data. Following
that we describe how we select the features for the regression
technique. Finally, we present the regression models that we
used.
SCATS Aggregation: The environmental measurements are
reported every hour. On the other hand the SCATS data arrive
in much higher frequency in the system. Every minute each
SCATS sensor reports information regarding the traffic flow
for a particular junction of Dublin. We aggregate the SCATS
data measurements for each sensor computing the mean value
of the degree of saturation metric every hour. In this way
the SCATS data are transformed into a time series with 24
measurements per day, similarly to the pollution reports.
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Fig. 9. Pollution Correlation among different districts of Dublin.
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Fig. 10. NO2 measurements (red) for the sensor located at Winetavern area
and the degree of saturation measurements (blue) of the SCATS sensor with
which it has the highest correlation.
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Fig. 11. The 20, 50 and 100 SCATS sensors that are related either spatially
or are correlated with the pollution station that is located at the Coleraine
area. The red marker annotates the pollution monitoring station.

Feature selection: Here we describe how we select the SCATS
data features that we use in order to estimate the NO2 values
for the different pollution stations in Dublin. The SCATS
sensors are embedded at different locations around the city
of Dublin (shown in Figure 2). In order to feed the regression
models and preform the predictions for NO2 values using the
SCATS data we followed three different approaches that are
described bellow:

• Most Correlated: We have observed that pollution con-
centration across different districts presents high corre-
lation for neighboring areas, as illustrated in Figure 9.
Hereby, we computed the correlation between each pollu-
tion station and each SCATS sensor and we selected the k
most correlated SCATS sensors for each pollution station.
For instance, Figure 10 illustrates the NO2 measurements
for the pollution station that is located at Winetavern area
and the values of the SCATS detector with which it is
mostly correlated. For instance, Figures 11a, 11b and 11c
display the locations of the mostly correlated sensors with
the pollution station that is located at the Coleraine area,
in which, we can see that the locations of the sensors are
distributed at different locations across the city.

• Spatially Close: In this case we select the k closest
SCATS sensors with the location of each environmental
station, considering the Euclidean distance between them.
For instance, Figures 11d, 11e and 11f, demonstrate the
locations of the SCATS sensors that are spatially close to
the station located at the Coleraine area, the sensors are
densely distributed near the area of the pollution station.

• All the sensors: In this scenario, we build the regression
model for each pollution sensor using the values of all
the SCATS sensors for the prediction. The regression
model is responsible to learn the appropriate hyper-
parameters/weights for each SCATS sensor.

Regression: In order to estimate the pollution data using the
information available from the SCATS sensors we adapted a
machine learning approach. The machine learning model uses
historical data of observed pollution measurements and aims to
estimate them using the information obtained from the SCATS
sensors. During the training process, the goal is to identify the
model parameters that result to the minimum estimation error.
We used a variety of regression methods in order to identify
the one that performs better for the pollution estimation task.
For the different areas considered a distinct learner is trained.
We utilized the following regression methods:

• Support Vector Regression (SVR): A robust regression
variant of the Support Vector Machine classifier. Support
Vector Regression is a non linear method if the appropri-
ate kernel function is used.

• Random Forest: An ensemble that consists of multiple
decision trees where each tree is trained using a different
subset of the training set.

• Gaussian Process: The Gaussian process is a non-linear
non parametric model and is an extension of the mul-
tivariate Gaussian distribution for infinite collection of
real-valued variables.

Estimation of city’s health level index: Having predicted
the pollution concentration value from our regression model,
we finally proceed on estimating the city’s health level index
for the particular area. We utilize the predicted value, which
we divide by the maximum value that annotates hazardous
pollution conditions, in order to derive the first term of the
health level index equation (Equation 4). Then, given the actual



TABLE I
PREDICTION ACCURACY FOR THE DIFFERENT AREAS OVER THE VARIOUS AREAS USING ALL THE SCATS SENSORS.

Gaussian Process SVR Random Forest

Area MAD MAE RMSE MAD MAE RMSE MAD MAE RMSE

Bally 32.43 33.20 36.05 12.98 12.89 15.00 13.37 13.97 16.27
Winetavern 42.60 43.57 45.83 10.06 11.91 15.24 10.54 11.25 13.76
Blanchard 43.73 46.58 53.02 21.48 22.85 27.14 18.86 21.49 25.70
Dunlaog 24.78 27.04 31.52 17.44 18.47 21.14 16.44 17.71 20.72
Coleraine 38.42 37.49 39.14 8.61 9.77 11.86 9.66 10.91 13.18

Average 36.39 37.58 41.11 14.11 15.18 18.08 13.77 15.07 17.93

TABLE II
PREDICTION ACCURACY FOR THE DIFFERENT AREAS OVER THE VARIOUS AREAS USING THE SPATIALLY CLOSE SCATS SENSORS.

Gaussian Process SVR Random Forest

Area MAD MAE RMSE MAD MAE RMSE MAD MAE RMSE

Bally 32.43 33.20 36.05 12.99 12.87 14.97 11.85 12.85 15.02
Winetavern 42.60 43.57 45.83 10.06 11.91 15.24 9.52 11.19 14.13
Blanchard 43.73 46.58 53.02 21.46 22.79 27.09 17.90 19.96 24.22
Dunlaog 24.78 27.04 31.52 17.43 18.44 21.11 15.48 17.77 20.46
Coleraine 38.42 37.49 39.14 8.61 9.77 11.86 9.70 10.66 12.88

Average 36.39 37.58 41.11 14.11 15.16 18.06 12.89 14.49 17.34

TABLE III
PREDICTION ACCURACY FOR THE DIFFERENT AREAS OVER THE VARIOUS AREAS USING THE CORRELATED SCATS SENSORS.

Gaussian Process SVR Random Forest

Area MAD MAE RMSE MAD MAE RMSE MAD MAE RMSE

Bally 32.43 33.20 36.05 12.98 12.89 15.00 12.73 14.16 16.79
Winetavern 42.60 43.57 45.83 10.06 11.90 15.23 9.28 11.15 13.70
Blanchard 43.73 46.58 53.02 21.47 22.84 27.14 17.85 20.17 24.77
Dunlaog 24.78 27.04 31.52 17.42 18.46 21.14 16.82 18.40 21.06
Coleraine 38.42 37.49 39.14 8.61 9.76 11.86 9.10 10.57 12.69

Average 36.39 37.58 41.11 14.11 15.17 18.07 13.16 14.89 17.80

value of degree of saturation, as reported from the SCATS
sensors, we estimate how much congested the road is. This is
performed by dividing this value with the maximum degree of
saturation value, as given by the city authorities (please note
that degree of saturation values over this threshold annotate
a congested road). Finally, we multiply both values, in order
to derive the city’s health level index, and therefore, find the
appropriate label that characterizes the city’s health level (safe,
moderate, hazardous).

IV. EXPERIMENTAL EVALUATION

In this section we present our findings regarding the corre-
lation between the different sources of data. We evaluated our
approach with respect to different aspects of the problem.

A. Experimental Setup

Dataset. We use two heterogeneous sources of data in
order to evaluate our proposed algorithm. The datasets provide
information regarding the road traffic conditions in Dublin City

and the pollution concentration of NO2 in districts of the city
(both city center and suburban areas).

SCATS data: For the evaluation purposes, we used the
SCATS data available for the period of time which overlaps
with the period of time of our pollution data. We utilized
the degree of saturation as the appropriate metric to observe
how much a road is utilized. The SCATS data used in this
work, contain aggregated data on hourly basis for 3402 sensors
installed across 557 junctions. The available data used for the
evaluation cover the period from 01/11/2015 until 21/12/2015.
The SCATS sensors that occasionally fail to provide measure-
ments are not used for the evaluation.

Pollution data: For the evaluation purposes, we utilized
pollution monitoring data that we derived from the Dublin
City Council. The pollution data contain information about
the concentration of NO2 and NO pollutants for six different
districts of the Dublin City. Each record of the dataset provides
information about the date, the hour of day and the respective
concentration of the pollutant near the monitoring station. The



available data used for the evaluation expand from 01/01/2015
up to 30/04/2017.

Evaluation Metrics. In order to evaluate the accuracy of
the proposed work the decision was to use the metrics: (i)
Mean Absolute Error (MAE), (ii) Root Mean Squared Error
(RMSE) and (iii) Median Absolute Deviation (MAD). RMSE
in comparison to MAE gives high weights to large errors while
MAD on the other had is not affected by large errors. The
evaluation was performed under 5-fold cross validation. Since
the data are time-series we performed cross-validation without
shuffling in order to preserve the initial order. For all the ma-
chine learning methods we used the available implementation
from the Scikit-Learn3 Python library.

B. Experimental Results
In Table I we describe the results obtained when using all

the SCATS sensors available in the city in order to estimate
the pollution for a specific area. As the results illustrate, in
terms of MAD, the SVM and the Random Forest approaches
result to the best performance. The average MAD over all
areas considered is 13.77. The drawback of this approach is
the fact that since all the sensors are used, the computational
requirements for training the model and performing the esti-
mations are increased.

The above problem is solved using only a subset of the
sensors to perform the estimation. In table II we describe the
results obtained when using the SCATS sensors installed on
the Top-50 spatially close junctions. Under this scenario, the
best performing regression method is the Random Forest and
the closest competitor is the Support Vector Machine. The
average MAD over all the areas considered is 12.89 when
using the Random Forest. This is a ≈ 6% reduction on the
estimation error in comparison to using all the SCATS sensors.

In Table III we present the results when using the Top-
50 most correlated SCATS sensors for an area. According to
the results, the best performance is achieved by the Random
Forest. The average MAD over all the areas when using the
Random Forest regression is 13.16. This fact suggests that the
estimation accuracy is better than using all the SCATS sensors
but slightly worse in comparison to using the spatially close
sensors.

According to the above results it is clear that using a care-
fully selected subset of the SCATS sensors, in order to estimate
the pollution for an area, may lead to similar or even better
accuracy in comparison to using all the available sensors. The
above realization could be very useful in cases where only a
small number of sensors is installed across the city. In addition,
the smaller the number of sensors used for the estimation
the fewer the computational requirements in order to train
the model and make the predictions. Figure 12, illustrates the
MAD achieved when using the spatially close sensors with
the Random Forest regression for different number of spatial
neighbors used. According to the figure, in most of the cases
there is no benefit by using more distant neighbors for the
estimation.

3http://scikit-learn.org version 0.18.1

Fig. 12. The median absolute error (MAD) according to different number of
spatial neighbors using the Random Forest regression. In most of cases, using
a small number of neighbors results to similar or even better performance
than using all the sensors.

Fig. 13. The Health Level Index (HLI) for some days of November of 2015
for the various areas considered.

HELIoS Perfomance. In Figure 13 we illustrate the Health
Level Index (HLI) as identified by HELIoS for several days
of November 2015. We observe that during weekdays there is
significantly higher health risk in comparison to weekends. We
also observed that in the weekdays there are two spikes per day
that correspond to the morning and evening rush hours while
during night the HLI drops to near zero levels. Moreover, we
noticed that during the weekends the two spikes pattern is not
present. We reason this to the fact that during weekends the
majority of the citizens do not drive to their work in mornings
and back to home in the evenings. Therefore, we can safely
conclude that “HELIoS” succeeds in diagnosing the health
level of each area.

V. RELATED WORK

Traffic Inference. In the literature, approaches that utilized
multiple sources of data for inferring the traffic state have
been proposed. In comparison with our previous work[23], in
this paper, we focused on a totally different aspect, which
is the estimation of the city’s health levels using multiple
sources of data. Moreover, the work of [20] utilizes multiple
sources of data, such as tweets and GPS probe data to
identify traffic congestion. However, the focus of their work
is fundamentally different from the work presented in this
paper and could not be applied to our setting. Authors of
[24], introduce a macroscopic model regarding the estimation
of traffic flow. However, their work focuses only on the traffic



estimation part and not in diagnosing the city’s health levels.
In contrast, in our work, we focus on a cross-domain fusion
of heterogeneous types of data. The work of [4], incorporates
a stacked autoencoder model to learn generic traffic flow
features, but does not incorporates any pollution data so as
to estimate the health levels of a city environment, whereas in
our work, we build a model based on the correlation between
traffic and pollution data. Several works over the last decades
use loop detectors in order to estimate the traffic across the
city. More specifically loop detectors were used in order to
estimate the travel time of a given query path. [25], [26], [6]
proposed techniques that estimate the vehicles’ speed when
crossing the loop detectors and then they converted the speed
in the into the road segments’ travel time.

Pollution inference. Authors of [27] present a prototype
client-cloud system for pervasive and personal air-quality
monitoring at low cost, which helps identify the concentration
of particulate matters. However, their focus is totally different
in comparison with the work presented in this paper, since, we
aim at combining streams of heterogeneous data sources, such
as pollution and traffic data. In [9], authors aim at deriving
high resolution air pollution maps using mobile sensor nodes.
However, in their work they do not incorporate the connection
between the observed pollution data and actual traffic, as
we do in our work. Finally, the work of [21] propose a
semi-supervised learning approach to infer information about
urban air quality. However, their work is limited since they
do not focus on identifying the city’s health levels, but only
estimating the air quality.

VI. CONCLUSIONS

In this work, we proposed “HELIoS”, a framework that
identifies the city’s health state by combining multiple hetero-
geneous sources of data. In our work we have made several
findings:

• We conducted an extensive analysis on heterogeneous
data sources and illustrated the relationship between the
different types of data.

• We show how these different sources of data can be
appropriately combined to build a regression model that
diagnoses the health level of city areas and extract mean-
ingful insights related to the health risks of an urban city.

• We illustrated that ”HELIoS” is practical and efficient for
recognizing health risks in smart cities.
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