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a b s t r a c t 

Online Social Networks (OSNs) constitute one of the most important communication channels and 

are widely utilized as news sources. Information spreads widely and rapidly in OSNs through the 

word-of-mouth effect. However, it is not uncommon for misinformation to propagate in the network. 

Misinformation dissemination may lead to undesirable effects, especially in cases where the non-credible 

information concerns emergency events. Therefore, it is essential to timely limit the propagation of 

misinformation. Towards this goal, we suggest a novel propagation model, namely the Dynamic Linear 

Threshold (DLT) model, that effectively captures the way contradictory information, i.e., misinformation 

and credible information, propagates in the network. The DLT model considers the probability of a user 

alternating between competing beliefs, assisting in either the propagation of misinformation or credible 

news. Based on the DLT model, we formulate an optimization problem that under cost constraints aims 

in identifying the most appropriate subset of users to limit the spread of misinformation by initiating the 

propagation of credible information. We prove that our suggested approach achieves an approximation 

ratio of 1 − 1 /e and demonstrate by experimental evaluation that it outperforms its competitors. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

The massive use of Online Social Networks (OSNs), that enu-

erate millions of daily active users [1,2] , have led to drastic

hanges on the communication and information sharing among

sers. Many people have integrated popular online social networks

n their everyday lives and rely on them as one of their major news

ources, with over 28% of people claiming to get their news from

ocial media and even local news media exploit OSNs to report

ews. 1 For instance, during the Marathon Bombing in Boston on

pril 15, 2013, the news broke initially on Twitter and local news

edia actively exploited the platform to report news regarding the

vent. 2 However, there are differences in terms of the triggers, ac-

ions and news values that are prevalent in news media and in

eneral in public shares in social media [3] . 
∗ Corresponding author 

E-mail addresses: litou@aueb.gr (I. Litou), vana@aueb.gr (V. Kalogeraki), 

atak@di.uoa.gr (I. Katakis), dg@di.uoa.gr (D. Gunopulos). 
1 http://www.mushroomnetworks.com/infographics/social- media- news- outlets- vs. 

 traditional- news- infographic . 
2 https://media.twitter.com/success/bostonglobe- uses- twitter- to- source- news- 

nd- keep- the- public- informed- during- the- boston . 
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An intriguing behavior of the users of an OSNs is information

haring. Aside from being informed through the network, users

urther propagate information of interest to their friends. An in-

eresting study reveals that more than 45.1% of the messages pub-

ished by a user are further propagated by his/her followers and

ver 37.1% are propagated by followers of up to 4 hops away

rom the original publisher [4] . However, it is not uncommon for

alse news to propagate through social networks, causing signifi-

ant repercussion outside the network, e.g., a tweet stating that

here was an explosion in the White House caused stocks to tem-

orarily plung. 3 It becomes therefore clear that it is vital to detect

nd timely block the propagation of deceptive information, since

issemination of false news in OSNs can have undesirable effects

ith a disastrous impact outside the network. Especially in cases

here the news concern emergency related events, limiting the

pread of misinformation becomes imperative. 

Misinformation is defined as any malicious, deceptive or irrel-

vant information regarding an event, that is spread either delib-

rately or unintentionally [5,6] . Manifold factors contribute to the

omplexity of the task of misinformation blocking. Sources of mis-

nformation are multiple and varying, as is the users’ susceptibility
3 http://www.cnbc.com/id/100646197 . 
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to the news they are exposed. Furthermore, the longer the decep-

tive information propagates in the network without contradiction

from a reputable source, the greater is the effect the misleading

information can have, and it is thus crucial to timely notify users

about the credible information. To effectively accomplish the lim-

itation of misinformation, understanding the way news propagate

and how contradictory information affect users’ decision to accept

and share content is required. Moreover, it is desirable to avoid un-

necessary broadcasting of messages, since this causes excess load

to the infrastructures that might be already over-utilized during

emergencies [7] . 

For the effective and efficient solution of the problem, a set of

interesting research questions should be addressed: (i) how can a

user’s susceptibility be estimated, so as to efficiently approximate

the degree to which the user is willing to adopt or renounce an

idea, (ii) how can we identify the sources of misinformation, (iii)

how can we estimate the the influence of the users across the net-

work, and finally (iv) given cost constraint, expressed as the num-

ber of sources to contradict misinformation, which is the most ap-

propriate subset of users to initiate the cascade in order to timely

limit the dissemination of misinformation? 

The problem of limiting misinformation or rumors in OSNs,

commonly referred as misinformation or rumor blocking, is the

subject of study in [8] where the authors discover the minimal

subset of users that minimize the propagation achieved by rumor

originators. Authors in [5] also study the problem of identifying

the smallest set of users to act as protectors against the dissemi-

nation of misinformation. Their goal is to find the smallest set of

highly influential users whose decontamination with good infor-

mation assists in limiting the spread of misinformation to a desired

ratio within a given number of steps. In [9] authors consider the

evolving propagation of competitive campaigns and aim at select-

ing the appropriate subset of nodes so that the eventual influence

of the misinformation campaign is minimized. Albeit the afore-

mentioned works address the problem of misinformation blocking,

there are significant limitations: First, none of the above schemes

considers propagation times and therefore, fail to capture any time

constraints during the dissemination of the information in their

models. Furthermore, the susceptibility of a user related to the

propagation of content is ignored. Finally, they assume that when-

ever a user is convinced about certain information, the user will

remain loyal to this belief as the propagation unfolds, regardless

of the state of its neighbors. However, this assumption is not al-

ways correct. There are multiple examples of users that have unin-

tentionally contributed to the spread of false news and they later

apologize for their mistakes. 4 

The objective of this work is to minimize the misinformation

spread while overcoming the above limitations. Our approach is

two-fold: First, we propose a novel propagation model, namely the

Dynamic Linear Threshold (DLT) model, where each user is asso-

ciated with a renouncement threshold that expresses her suscepti-

bility to adopt an idea. Instead of considering that the threshold

remains static throughout the propagation process, we define it to

be dynamically adjusted after a user adopts an idea. The adjust-

ment of the threshold denotes that a user has the ability to re-

nounce a previously adopted belief. However, adopting a different

opinion regarding the validity of the information is less likely af-

ter the user is convinced on a specific piece of information. Fur-

thermore, the proposed model considers the impact of competing

ideas to the users’ choice of adopting an idea. Finally, contrary to

existing models such as the LT model, we consider that the influ-

ence of a user over any other user in the network varies over time
4 http://twitchy.com/2015/05/04/we-screwed- up- shep- smith- apologizes- for- 

false- report- on- baltimore- shooting- video/ . 

a  

t  

t  

W  
nd there is a certain time frame that a user is more likely to be

nfluenced by a specific neighbor. 

To limit the spread of misinformation, in the second part of our

pproach, we propose an algorithm that, given a budget, aims at

electing an appropriate subset of users to initiate the propagation

f credible information. Our goal is to identify a subset of users

o act as seeds for the dissemination of credible news, so that the

umber of users infected during the spread of a non-credible in-

ormation is minimized. We define as infected the users that con-

ribute to the propagation of the misinformation. We formulate the

roblem as an optimization task and propose a greedy approach

or selecting the subset of users to contradict the misinformation.

e require that the size of the subset does not exceed the budget,

atisfying therefore the cost constraints. The suggested technique

xploits simulated annealing to determine the credible seed set,

.e., the users that initiate the propagation of credible information

nd we formally prove that our approach achieves an approxima-

ion ratio of 1 − 1 /e . 

.1. Contributions 

The contribution of this work is summarized as follows: 

• We introduce a novel propagation model where users’ suscep-

tibility to news dynamically adapts over time. The model cap-

tures the hesitance of users to renounce their beliefs, making

it appropriate to realistically describe the spread of information

in OSNs. Furthermore, while previous works ignore time con-

straints during the propagation process, we capture time as an

actual unit. We argue that propagation time differs among any

two users and exploit the Poisson Distribution to capture the

probability of timely delivery of messages. 

• We suggest a greedy approach that efficiently solves the prob-

lem of misinformation limitation by selecting an appropriate

subset of users to decontaminate the network. Our proposed

model for seed selection is efficient and independent of the

structure of the underlying network. We prove that it approxi-

mates the best solution with an approximation ratio of 1 − 1 /e

and it is suitable for real-time misinformation containment, as

it requires less than 23 min to identify up to 10 0 0 seeds in

dense networks. 

• We illustrate through extensive experimental evaluation that

our approach achieves notably better results than its competi-

tors with respect to misinformation limitation with a remark-

able reduction in resource costs. The suggested approach re-

quires in all cases a significantly lower amount of messages ex-

change in the network, while achieving better results in mis-

information blocking under different cost constraints, making it

thus efficient and cost-effective. 

. Model and problem definition 

In this section we describe the network model and formally de-

ne the problem of misinformation blocking. We further prove that

dentifying the appropriate subset of users to limit the spread of

isinformation is NP-complete. 

.1. Network model 

A social network is commonly represented as a directed

eighted graph G ( V, E ). Users of the network constitute the nodes

nd a directed edge from user u to v denotes the flow of informa-

ion. For example, in the Twitter network, the edge u → v denotes

hat user v has replied to or retweeted messages published by u .

e associate each edge u → v with a weight w uv , which expresses

http://twitchy.com/2015/05/04/we-screwed-up-shep-smith-apologizes-for-false-report-on-baltimore-shooting-video/


I. Litou et al. / Online Social Networks and Media 2 (2017) 19–31 21 

Fig. 1. DLT Propagation Example. 
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he influence of u over v and may be estimated based on prior user

nteractions. 

Each node u is assigned a credibility score c u and a renounce-

ent threshold r u . The credibility score c u expresses the trustwor-

hiness of the user u . Effectively estimating the users’ credibility

s out of the scope of this work, however, there are approaches

uggested by former studies on how to identify sources of mis-

nformation. For example, in [5] authors exploit the Reverse Dif-

usion Process to detect possible sources of misinformation given

 snapshot of the diffusion. Prakash et al. [10] aim in identifying

he initiators of a spread given an epidemic propagation model.

echniques that aim in real time identification of non-credible in-

ormation, as those suggested in [11] , may also be exploited to

haracterize the trustworthiness of a user. The study in [12] , where

he authors estimate the validity of an information considering the

ood sensitivity factor, may also assist towards the identification

f non-credible users. Another interesting work towards this direc-

ion is the work of Wu et al. [13] where based on past rumors

irculated in the network a framework for early rumor detection is

eveloped, that can be exploited in order to infer users’ credibility.

The renouncement r u denotes the incredulity of the user u in

enouncing an already adopted opinion, either credible or misin-

ormation. Users that present high renouncement are characterized

s skeptical in adopting and propagating information, while users

ith low renouncement are less reluctant. We assume that users

ave an initial reluctance regarding information sharing, but af-

er they are convinced on disseminating the information, their re-

ouncement threshold increases, as they become hesitant in later

witching their beliefs. 

Following the terminology of [8] , we distinguish between three

ifferent user roles, namely infected, protected and inactive . 

Infected users (I) : Non-credible users or users that adopt and

ropagate false news. We do not distinguish between users that

ntentionally spread false news from those that are influenced by

he wrong news, since the user contribution towards the spread of

isinformation is independent of this fact. Infected users are con-

idered negatively influenced users. 

Protected users (C) : Users that adopt the credible information

nd therefore are able to further propagate it to the network are

eferred to as Protected users or positively influenced . Unlike the

ork in [8] that assumes that the protected users remain protected

hroughout the propagation process, we define them to be suscep-
ible to misinformation. 
c  
Inactive users (R) : Users that are unaffected by the propagation

f either credible or false news. It holds that R = V \ (I ∪ C) , where

 is the set of all users. 

An example of the social graph is presented in Fig. 1 a, where

egative, positive and non-signed users represent the infected, pro-

ected and inactive users, respectively. The values on the edges de-

ote the weights, while the c and r values represent the renounce-

ent threshold and the credibility scores respectively. 

.2. Problem definition 

We define the problem addressed in this as follows: Given (i)

 social graph G ( V, E ), (ii) the weight of the edges w uv , ∀ u → v ∈ E

mong users of the network, denoting the influence of user u over

 , (iii) the set of initially non-credible users before the propaga-

ion unfolds (this constitutes the misinformation originators I 0 ),

nd (iv) a parameter k denoting the cost constraints and expressed

s the desired number of user in the network to act as initia-

ors of credible news propagation, our goal is to select a subset

f users S with | S | ≤ k , so that the number of infected users I dur-

ng the propagation is minimized. We aim at a cost-effective so-

ution where we define the cost for the seed selection process as

he amount of messages exchanged among users. Thus, it could be

onetary (for an SMS) or resource allocation cost. Note that the

arameter k may be adjusted in order to reflect the available bud-

et, i.e., the amount of messages to be sent in the network, and

ence reduce costs. I 0 constitutes a subset of the infected users

nd the seed subset S of the credible users, hence I 0 ⊂ I and S ⊂ C .

he study in [14] reveals that users tend to be very polarized re-

arding certain topics, e.g., conspiracy, and are more susceptible

egarding the diffuse of false information based on their polariza-

ion tendencies. The homophily of the users also plays an impor-

ant role to the misinformation diffusion. We note that although

n this work we assume absence of user polarization or confirma-

ion bias, these aspects can be captured by appropriately defining

he subset I 0 and S . That is, users that are considered malevolent

an be included in I 0 , and users that confirm facts before posting

n Social Media can be included in S a priori. Although we assume

 to be initially empty, relaxing this assumption does not impose

ny restrictions to our approach. We refer to users in S as seeds .

he role of the seeds is to decontaminate the infected users by

ropagating the credible information. We assume that seeds are

onvinced about the credible information, regardless of their re-
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Table 1 

Parameters table. 

G(V,E) Weighted social graph 

V Nodes of the graph denoting users of the Social Network 

E Edges on the graph denoting the flow of information 

u → v Edge between users u and v 

w uv Weight of edge u → v , denoting the influence of user u over v 

c u Credibility score of user u 

r u Renouncement threshold user u 

I The set of infected users 

R The set of inactive users 

C The set of protected users 

S The set of seed users selected to propagate the credible information 

T uv Set of time intervals t i between subsequent interactions of u with v 

λ The variance Var ( T uv ) 

p uv ( t ; λ) Probability of user u influencing v at time t 

IF ( v | t ) Influence exceeded to user v by the neighbors at time t 
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nouncement threshold. We show in our experimental evaluation

how this assumption impacts the performance of our approach. 

The aforementioned problem is referred in the bibliography as

the Influence Blocking problem [8,15] and can be proven to be NP-

Complete. 

Theorem 1. The influence blocking problem is NP-complete 

Proof. Consider the special case where all users have the same

probability to influence their neighbors, regardless of the time one

user is exposed to another user’s influence, and that probability

equals 1, i.e., w u v = 1 , ∀ u → v ∈ E. This implies that if user u adopts

a belief, all out-neighbors of u (i.e., users influenced by u ) will

adopt the same belief. Given the set of users V , we construct a

set of subsets of V , SG = { V 1 , V 2 , . . . , V m 

} , so that if a user in V i , ∀ i

∈ [1, m ] is infected, all users in the subset V i are infected. In order

to reverse the belief adopted by a subset V i , we have to convince

at least one node u ∈ V i of the credible information. In order to

leave no node infected we have to select a subset of users S , | S | ≤
k , so that S ∪ V i 	 = ∅ , ∀ i ∈ [1, m ]. The above problem as described,

constitutes the Hitting-Set Problem , a well know NP-complete prob-

lem. Since the special case is NP-complete, we conclude the NP-

Completeness of the original problem. �

3. Propagation model 

In this section we present the first part of our approach for

solving the problem of misinformation propagation. We introduce

our propagation model (DLT) and then present our methodology

for computing the influence when users are exposed to contradic-

tory information and the updated renouncement scores. 

3.1. The dynamic linear threshold model 

The most common propagation models in Social Networks are

the Independent Cascade (IC) model and the Linear Threshold (LT)

model [16] . Users that adopt a belief and further assist in the prop-

agation of the belief are referred to as active . In the IC model each

active user has a single chance of activating his/her inactive neigh-

bors and the probability to succeed is expressed as a function of

the weight of the corresponding edges. The propagation unfolds

in discreet steps, with the users activated in the later step having

the chance to influence their currently inactive neighbors. In the

LT model, each user is associated with a threshold θ . Unlike the

IC model, a user is activated whenever the sum of the weights of

the incoming edges from the currently active neighbors, i.e., the

incoming influence, exceeds the threshold θ of the user. 

Both the IC and the LT propagation models express the infor-

mation dissemination of a single campaign and hence ignore the

way conflicting propagation may impact one another. Furthermore,

traditional IC and LT models ignore propagation times. Variations

of the above models consider time limitations [17–19] , yet none of

them takes into account opposing campaigns that may be propa-

gated simultaneously. 

To overcome the above limitations, we propose the Dynamic

Linear Threshold (DLT). Our suggested propagation model differs

from the traditional LT model in the following ways: 

• The LT model assumes the propagation of a single idea in the

network, while DLT considers competing ideas that simultane-

ously propagate and evolve over time. 

• We estimate the influence of a user u to a neighbor v not solely

based on the weight of the edge u → v , but also based on the

time frame, i.e., there is a time window that a neighbor is most

likely to be influenced. 

• In the LT model, whenever a user adopts an idea, she remains

thereafter loyal during the propagation process. On the con-
trary, we assume that the user may renounce an idea, based

on the input influence of the neighbors. 

• Finally, the threshold of user v , denoted as renouncement r v ,

can be dynamically updated over time after user v adopts an

idea. 

Similarly to the LT model, we consider that a user v adopts a

elief when the influence from the incoming neighbors exceeds

he renouncement threshold r v . To estimate the probability that a

ser u influences a user v at time t we exploit the Poisson Distri-

ution, taking into account past interactions of user u and v . User

 adopts either the misinformation or the credible information, de-

ending on the beliefs of the incoming neighbors. The propagation

rocess unfolds at discrete steps as follows: (i) At step τ − 1 each

ser u that is either negatively or positively influenced (infected or

redible respectively), influences the currently inactive neighbors

 ∈ out ( u ) with a probability IF ( v | t ) that is estimated based on the

eight of the edge and the time window t . (ii) A user v adopts a

elief based on the influence of the incoming neighbors u ∈ in ( v ).

n case that the negative/positive influence exceeds the renounce-

ent threshold r v , then user v becomes infected/credible. We as-

ume that, if both conflicting propagation reach the renouncement

hreshold r v simultaneously, user v adopts neither of them. This is

ased on the fact that when a user is convinced on both conflicting

nformation, due to the high ambiguity presented for the specific

nformation, he remains hesitant concerning the adoption of either.

iii) At step τ , each node that is either positively or negatively in-

uenced at step τ − 1 is added to the credible or infected set and

he renouncement thresholds are updated. 

The aforementioned propagation steps are repeated until no

ore users can be influenced, i.e., the credible and infected sets

emain unchanged. The existence of conflicting influences at node

 is taken into consideration when deciding whether v will adopt a

pecific belief, as explained in Section 3.2 . In Fig. 1 we present an

xample of the propagation, where newly influenced users at step

have their renouncement thresholds updated. 

.2. Influence and renouncement computation 

In this section, we formulate the influence channeled to the

sers from their neighborhood during the propagation of conflict-

ng information. We also define how the renouncement threshold

f a user is updated after a belief is adopted. 

In the DLT model we consider that the propagation unfolds over

ime and the transmission times between any two users vary. To

stimate the probability of user u influencing user v at time t we
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ssume a Poisson Distribution, that is, 

p u v (t;λ) = 

λt e −λ

t! 

where λ = V ar(T u v ) = 

1 
n 

n ∑ 

1 

(t i − μ) 
(1) 

In the above equation T u v = { t 1 , t 2 , . . . , t n } , is the set of time in-

ervals between any two subsequent interactions of user u with

, t i is the ith interval, n is the total number of subsequent inter-

ctions and μ is the mean of all values in T uv . By exploiting the

bove distribution to model the propagation times between nodes,

ach neighbor u ∈ in ( v ) is given a different probability for influenc-

ng user v , which evolves over time. Hence, the influence of v from

is neighbors changes dynamically over time. This is a reasonable

ssumption considering the way updates are presented to users in

nline Social Networks, i.e., a timeline presentation with the more

ecent update on top. As time elapses, the influence of user u on

ser v gradually fades, since the probability of the update of u pre-

ented in the timeline of v decreases. Each neighbor presents a dif-

erent decreasing ratio. However, updates may not necessarily ap-

ear in the most recent way in the news feed of the user [20,21] ,

ence the Poisson Distribution captures the fact that between each

wo users u and v , with edge u → v , there is a different time win-

ow within which the probability of u influencing v increases. Note

hat more sophisticated methods that predict whether a user will

iew a message within a certain time window from its publication

ay be exploited [22] . 

We consider that a user v at time t is influenced by his/her

eighbors according to the following Influence Function: 

F (v | t) = 

∑ 

u ∈ in (v ) 
B (u | t) · p u v (t;λ) · w u v (2)

here in ( v ) denotes the incoming neighbors of user v, B ( u | t ) equals

1 if user u has adopted the non-accurate belief at time t, B ( u | t )

quals 1 if user u is convinced on the credible information at time

 , or is 0 otherwise (i.e. if no belief has been adopted). In the above

quation p uv ( t ; λ) denotes the probability that user u influences v

t time t and w uv denotes the influence of u over v as expressed by

he weight of the edge u → v . User v adopts a belief if | IF ( v | t )| ≥ r v 
nd B ( v | t ) at time t is set to 1 if IF ( v | t ) > 0, or −1 if IF ( v | t ) < 0. In

ase | IF ( v | t )| < r v we assume that no belief can be adopted either

ecause none of the credible or non-credible exceeds the threshold

r both exceed it, thus causing confusion to the user and therefore

eading her to dismiss both ( B (v | t) = 0 ). 

The above function considers the co-existence of conflicting

ascades, since the misinformation decreases the sum while the

redible information increases it. Therefore, unless either the posi-

ive or negative influence is strong enough, the user becomes hes-

tant on which one to adopt. Intuitively, when a user is exposed

o both the negative and the positive propagation, the influence of

he one is counterbalanced by the influence of the other. 

Whenever user v adopts a belief B i , then the renouncement

core r v ( t ) of user v at time t is updated as follows: 

 v (t) = 1 − (1 − r v (0)) y +1 (3)

here 1 − r v (0) denotes the inherited reluctance of user v regard-

ng the adoption of a cascade, and y the number of times a user

witched believes. The above equation intuitively expresses that

he renouncement of user v increases whenever he/she adopts

 belief, hence, the user becomes more reluctant renouncing an

dopted belief. 

. Misinformation blocking 

In order to limit the spread of false news, and therefore the

umber of infected users, we suggest the selection of a limited

ubset of users that will assist the decontamination of infected
sers by cascading the credible news. Our approach aims primarily

n preventing the misinformation from reaching the users in the

etwork rather than convincing them to switch their opinion af-

er they are contaminated. However, even in the case of decon-

amination, the difficulty of the decontamination process once a

ser is convinced on a specific belief is captured by the propa-

ation model, as the thresholds of the users increase after a be-

ief is adopted, denoting that it becomes more difficult to debunk

o people who are already infected. Since the problem of find-

ng the appropriate subset of users for misinformation blocking is

P-Complete, we develop a greedy algorithm that iteratively adds

odes to the seed set S , until the desired number k of seeds is

eached, or no more seeds can be added. The algorithm exploits

imulated annealing at each iteration in order to determine the

ost appropriate seed. 

Based on Eq. (2) , for a node v not to be infected, it should hold

F ( v | t ) ≥ 0 or | IF ( v | t )| < r v otherwise, that is: 

∑ 

 ∈ in (v ) 
B (u | t) · p u v (t;λ) · w u v ≥ 0 , or 

∑ 

u ∈ in (v ) 
B (u | t) · p u v (t;λ) · w u v | < r v (4) 

In order to identify the misinformation originators, we exploit

he credibility scores of the users, denoting as misinformation orig-

nators the users with the lower credibility scores. We argue that

imply displaying a warning next to any communication from un-

eliable individuals is not sufficient, as the credibility of a user may

ary based on variety of factors, e.g., proximity to the event, thus

t should be identified in real-time and differ based on the specific

nformation that is spread. Additionally, other factors such as the

sers’ credulity that may impact on their credibility, could be con-

idered. Given the set of misinformation originators I 0 , the nodes

ikely to be infected at the next step belong to the neighborhood of

 0 . Therefore, for nodes with incoming edges from I 0 , i.e., v ∈ out ( I 0 )

e have to maximize IF ( v | t ) of user v , while considering the num-

er of nodes I k infected after k seeds are selected. Hence, we define

he function g ( S k ) as follows: 

(S k ) = 

∑ 

v ∈ out(I 0 ) 

IF (v | t) − (| I k | − | I 0 | ) 

= 

∑ 

v ∈ out(I 0 ) 

∑ 

u ∈ in (v ) 
B (u | t) · p u v (t;λ) · w u v − (| I k | − | I 0 | ) (5) 

In the above equation (| I k | − | I 0 | ) denotes the additional nodes

nfected given the seed set S k . We need not only to maximize the

ositive influence, but also minimize the set of infected nodes.

herefore, by maximizing g ( S k ) we either increase positive influ-

nce by maximizing 
∑ 

v ∈ out(I 0 ) 

∑ 

u ∈ in (v ) B (u | t) · p u v (t;λ) · w u v or de-

rease the set of infected nodes at time t by minimizing (| I k | −
 I 0 | ) . Since B ( u | t ) equals 1 when the node u is credible, −1 if u

s infected or 0 otherwise, the above equation may be written as

ollows: 

(S k ) = 

∑ 

v ∈ out(I 0 ) 

( ∑ 

u ∈ W k 

p u v (t;λ) · w u v −
∑ 

u ∈ I 0 
p u v (t;λ) · w u v 

)

−(| I k | − | I 0 | ) (6) 

here W k = C ∪ S k . W k denotes the neighbors of node v that are

rotected and therefore have a positive influence and I 0 are the

nfected nodes and have negative impact. In Algorithm 1 we

resent the simulated annealing approach for achieving the maxi-

ization of g ( S k ). Parameters α, T and T min are tunable, depending

n the refinement required in the solution. However, these can ef-

ect the execution times. For the experiments the values are set as

n Algorithm 1 . 
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Algorithm 1: REACT. 

Data : G (V, E) , I 0 , C, seedsSize , t 

S ← ∅ ; 
while | S| < seedsSize do 

T ← 1 . 0 ; 

T _ min ← 0 . 0 0 01 ; 

α ← 0 . 7 ; 

g(S k ) ← nul l ; 

while T > T _ min do 

u k ← randomSeed(V ) ; 

S k ← S ∪ u k ; 

I k ← getIn fected(I 0 , C, S k ) ; 

g new 

(S k ) = 

∑ 

v ∈ out(I 0 ) 

( ∑ 

u ∈ C∪ S k 
p u v (t;λ) · w u v −

∑ 

u ∈ I 0 
p u v (t;λ) · w u v 

)
− (| I k | − | I 0 | ) ; 

if g(S k ) == null then g(S k ) ← g new 

(S k ) ; 

ap ← e 
g new (S k ) −g(S k ) 

T ; 

if ap ≥ random () then 

u ← u k ; 

g(S k ) ← g new 

(S k ) ; 

end 

T = T · α; 

end 

S ← S ∪ u 
end 
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The algorithm computes the seed set S as follows: 

1: Initially a random seed u k is selected at step k . 

2.1: Given u k , the seed set S and the misinformation originators

I 0 , we estimate the set of users I k infected when u k is added

to the seed set S k = S ∪ u k as well as the new value of the

g ( S k ) function. I k is computed by simulating the propagation

under the DLT model given the seed set S k . For the simu-

lated annealing iteration we store the value of the prior best

seed as well as seed u . Hence, g ( S k ) expresses the value of

the best candidate seed at step k and u the best candidate,

and g new 

( S k ) the value of the u k candidate investigated at the

current iteration of the simulated annealing process. 

2.2: After the simulated annealing of the kth iteration completes

the best candidate u is added to the seed set S , and the set

is updated as S = S ∪ u . 

3: Steps 1 through 2 are repeated until the required number of

seeds is selected or no more nodes may be protected by the

selection of additional seeds. 

We do not consider streaming data in order to estimate the

evolution of the propagation process after the seeds are selected.

Albeit, it is possible that the propagation may not evolve as pre-

dicted. In that cases the ability to adapt to such concept drifts by

exploiting adaptive learning techniques [23] may be desirable. 

5. Approximation ratio 

We now prove that the maximization of the g ( S ) function, by

iteratively adding seeds in a greedy manner, leads to a selection of

a seed set S that approximates the optimal solution within a factor

of 1 − 1 /e [16] . In order to achieve the above approximation rate

the function generating the seed set has to be non-negative, mono-

tone and sub-modular. In contrast to the Linear Threshold model,

we note that there is a negative part presented in the g ( S ) func-

tion, i.e., 
∑ 

u ∈ I 0 p u v (t;λ) · w u v , and hence the proof of monotonicity

and non-negativity slightly differs from the LT model. 
Non-negativity : Since we maximize g ( S k ), we have that node

 k selected at step k adds value, therefore, by definition σ (u k ) =
(S k ∪ u k ) − g(S k ) is non-negative. 

Monotonicity : g(S k ) ≥ g(S k −1 ) ∀ S k = S k −1 ∪ u k . 

roof. Given the set of infected nodes I k −1 when k − 1 seeds are

elected and the set of nodes P u k that are infected when u k is not

 seed, i.e., P u k are nodes sheltered by u k , based on Eq. (6) , at the

th iteration we have: 

g (S k ) = 

∑ 

v ∈ out(I 0 ) 

( ∑ 

u ∈ W k 

p u v (t;λ) · w u v 

−
∑ 

u ∈ I 0 
p u v (t;λ) · w u v 

)
− (| I k | − | I 0 | ) 

= 

∑ 

v ∈ out(I 0 ) 

( ∑ 

u ∈ (C∪ S k −1 ∪ u k ) 
p u v (t;λ) · w u v 

−
∑ 

u ∈ I 0 
p u v (t;λ) · w u v 

)
− ((| I k −1 | − | P u k | ) − | I 0 | ) 

= 

∑ 

v ∈ out(I 0 ) 

(
p u k v (t;λ) · w u k v 

+ 

∑ 

u ∈ (C∪ S k −1 ) 

p u v (t;λ) · w u v 

−
∑ 

u ∈ I 0 
p u v (t;λ) · w u v 

)
− ((| I k −1 | − | P u k | ) − | I 0 | ) 

= | P u k | + 

∑ 

v ∈ out(I 0 ) 

p u k v (t;λ) · w u k v 

+ 

∑ 

v ∈ out(I 0 ) 

( ∑ 

u ∈ W k −1 

p u v (t;λ) · w u v 

−
∑ 

u ∈ I 0 
p u v (t;λ) · w u v 

)
− (| I k −1 | − | I 0 | ) 

= | P u k | + 

∑ 

v ∈ out(I 0 ) 

p u k v (t;λ) · w u k v + g(S k −1 ) 

We note that if u k has no incoming edges to v , then P u k +
 

v ∈ out(I 0 ) 
p u k v (t;λ) · w u k v = 0 . Therefore, 

(S k ) = | P u k | + 

∑ 

v ∈ out(I 0 ) 

p u k v (t;λ) · w u k v + g(S k −1 ) (7)

⇒ g(S k ) ≥ g(S k −1 ) 

�

Submodularity : In order to prove that a function is submod-

lar, for two sets M 

1 ⊆M 

2 and a node u k , it should hold that

(M 

1 ∪ u k ) − g(M 

1 ) ≥ g(M 

2 ∪ u k ) − g(M 

2 ) , i.e., node u k should add

reater value when added to the subset. 

roof. From Eq. (7) we get that 

(M 

1 ∪ u k ) = | P M 

1 

u k 
| + 

∑ 

v ∈ out(I 0 ) 

p u k v (t;λ) · w u k , v + g(M 

1 ) (8)
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here P M 

1 

u k 
is the set of nodes protected when u k is added to M 

1 .

ubsequently, 

(M 

1 ∪ u k ) − g(M 

1 ) = | P M 

1 

u k 
| + 

∑ 

v ∈ out(I 0 ) 

p u k v (t;λ) · w u k v (9)

imilarly for M 

2 , with P M 

2 

u k 
denoting the set of nodes protected

hen we add u k to M 

2 , it holds that 

(M 

2 ∪ u k ) − g(M 

2 ) = | P M 

2 

u k 
| + 

∑ 

v ∈ out(I 0 ) 

p u k v (t;λ) · w u k v (10)

Based on Eqs 9 and 10 , in order to prove that the function is

ubmodular, we have to prove that | P M 

1 

u k 
| ≥ | P M 

2 

u k 
|, i.e., the nodes

rotected when u k is added to M 1 ⊆ M 

2 , equal or exceed the num-

er of nodes protected by u k when the node is added to M 

2 . For

he nodes P M 

2 
protected from the seed set M 

2 ⊇ M 

1 , it holds that

 

M 

2 = P M 

1 ∪ P M 

2 \ M 

1 
, i.e., the set of nodes protected from M 

2 equals

he set of nodes protected from M 

1 , augmented by the protected

odes due to the additive seeds belonging in the relative comple-

ent of M 

2 with respect to M 

1 . Denoting as P u k the set of nodes

rotected when u k is the only seed, we get that P M 

1 

u k 
= P u k \ P M 

1 

nd P M 

2 

u k 
= P u k \ P M 

2 
. By further analysing the equation of P M 

2 

u k 
,

e get P M 

2 

u k 
= P u k \ P M 

2 = P u k \ (P M 

1 ∪ P M 

2 \ M 

1 
) = (P u k \ P M 

1 
) ∩ (P u k \

 

M 

2 \ M 

1 
) = P M 

1 

u k 
∩ (P u k \ P M 

2 \ M 

1 
) . Hence | P M 

2 

u k 
| ≤ | P M 

1 

u k 
| and conse-

uently the function is submodular. �

. Experimental evaluation 

We conducted a set of experiments on two real world datasets,

amely the Sandy Dataset and the NetHepPh dataset. The Sandy

ataset consists of tweets related to the hurricane Sandy, a large

cale emergency event. We choose this dataset as it is indicative of

he way emergency related information flows in the network. The

econd dataset is a collaborative network that covers scientific col-

aborations between authors of papers submitted to High Energy

hysics - Phenomenology category in the e-print arXiv and it is

idely used for testing information diffusion purposes [5,15,18] . In

rder to assess the performance of our approach, we implemented

nd compared three seed selection techniques. 

Degree: Under the Degree seed selection technique, nodes are

dded to the seed set based on their out-Degree, i.e., nodes with

he highest number of outgoing edges are selected as seeds. Based

n our definition of edges in Section 2.2 , nodes with high out-

egree values are highly influential, as an edge from node u to-

ards v , i.e., e u → v denotes that v is influenced by u . Therefore, the

ighest the degree of a user, the greater the number of users in-

uenced by this node. Although this technique reaches many users,

he users most likely to be infected may never be reached as the

egree metric does not consider misinformation originators and

heir proximity to the rest of the users in the network. 

Greedy viral stopper (GVS): The GVS technique constitutes a

odification of the algorithm suggested by Nguyen et al. [5] . In-

tead of searching the minimum seed set for the decontamination

f nodes, seeds are selected until a desired number of seeds is

eached. The GVS model iteratively selects seeds. At each step k

 node u that results in the greatest number of users protected

rom seed set S k ∪ u is selected. However, this approach ignores

hat users may later switch beliefs regarding the information they

ropagate. 

REACT: REACT (REal-time And CosT-effective misinformation

locking) constitutes the implementation of our approach, that

xploits simulated annealing to determine the appropriate set of

eeds to decontaminate the network. 
Concerning propagation times between users, since these are

ot provided, we randomly generate a set of 10 time intervals

 i ∈ T uv between any two user u and v , where u, v ∈ V and e u → v ∈ E

n the social graph G ( V, E ) of the network. Every t i ranges between

 and 5 minutes, i.e., 0–300 s. For the experimental evaluation, we

ssign the initial renouncement thresholds and credibility scores

f the users uniformly at random. We evaluate the performance of

ur approach under varying cost constraints, by tuning the param-

ter k that expresses the number of users to act as seeds for the

issemination of credible news. 

.1. Decontamination performance 

In the first set of experiments, our goal is to estimate the num-

er of nodes decontaminated under varying sizes of misinforma-

ion originators. For these experiments we ignore any time con-

traints that may be required on the misinformation blocking. This

s achieved by setting p ( t ≤ 5 min ; λ) for all nodes, that results to

, since all times are generated between 0 and 5 min, as men-

ioned above. The misinformation originators are set to 10% and

5% of the nodes with the lower credibility values of all nodes in

he social graph. We choose 10% in accordance to [8] and 15% as

n [5] . Although misinformation originators may be more densely

onnected to one another, rather than randomly placed and con-

ected on the network, e.g., due to homophily, our approach for

eed selection is independent of the structure of the network and

he connectivity of the users and therefore performance is not ex-

ected to significantly vary in such cases. 

.1.1. Sandy dataset 

The first dataset is related to tweets regarding the Sandy Hur-

icane, a major emergency event that unfolded in 2012, from Oc-

ober 22 to November 2, and severely affected the area of New

ork City. The dataset is derived by the work in [24] and tweets

elated to the event were collected based on the keywords “sandy”

nd “hurricane”. In order to form the graph, we used the replies

 tweet received. For each reply an edge is formed between the

ser that published the tweet and the user that replied. The influ-

nce flows from the original publisher to the responder, since the

sers that reply are affected from the tweet and therefore influ-

nced by the publisher of the tweet. We refer to the user of the

riginal tweet as source . Users that presented no interactions are

xcluded from the social graph. The final graph G ( V, E ) consists of

5838 users and 23913 edges. The influence of a source u to a user

 , i.e., the weight of the edge, is calculated as follows: 

n f luence u → v = 

R v (u ) 

max { R v (u 

′ ) : ∀ u 

′ ∈ V } (11) 

here R v ( u ) is the total number of replies of user v to user u . Intu-

tively, the influence of u to v is estimated based on the maximum

umber of interactions of v with any other user u ′ ∈ V in the net-

ork. We chose to express the weight of the edges based on the

eplies, rather than the retweets, since the dataset presented a lim-

ted number of retweets. 

In Fig. 2 we present the number of infected nodes after the

ropagation process is completed, given seed sets of different sizes,

nd in Fig. 3 we present the percentage of nodes sheltered by

he selected seeds. We define as sheltered the nodes that are in-

ected during the propagation of misinformation when protectors

i.e. seeds) are absent. Overall, REACT outperforms the Degree ap-

roach for seed selection, by managing to decontaminate a larger

ortion of users in the network and at a significant redundancy of

oad to the network due to excess messages, as observed in Fig.

 . The fact that REACT performs better than the Degree approach,

hile not overloading the network with excess traffic of messages,
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Fig. 2. Number of Infected nodes (Sandy). 

Fig. 3. Percentage of nodes sheltered (Sandy). 

Fig. 4. Cost-Nodes receiving additional messages (Sandy). 
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is an important advantage of the suggested technique, as it demon-

strates that it is cost effective in terms of resources consumption.

This is particularly useful in cases that the network may be already

over-utilized, as the cases of emergency events [25] . GVS approach

seems to perform poorly under all cases, as it only considers the

number of nodes informed on the credible information rather the

minimization of nodes infected. Same trends are observed when

we set the misinformation originators to either 10% or 15%, with a

slightly drop at the number of nodes protected when the misinfor-

mation originators increase. 

6.1.2. High-energy physics citation network - NetHepPh 

This dataset is a citation graph provided as part of the 2003

KDD Cup [26] and information on the construction of the origi-

nal graph can be found in [27] . As the graph contains only undi-

rected edges while we require a directed graph, we alter the origi-

nal dataset so that when an author u co-authored a paper with au-

thor v , the graph contains two directed edges, from u to v and from

v to u . The resulting graph consists of 12008 nodes and 237010 di-

rected edges. Since the dataset contains unweighted edges, we as-
ign weights uniformly at random, similarly to [5] . Contrary to the

andy Dataset, NetHepPh presents high connectivity among nodes

nd since all nodes are connected bi-directionally, there is a higher

hance that a node influences another, making it difficult to reach

t a steady state during propagation. 

Results for the NetHepPh dataset are presented in Figs. 5

hrough 7 . We observe that the advantage of REACT over its com-

etitors becomes clearer in this dataset. Unlike the Degree or the

VS approach, REACT considers the probability of a user renounc-

ng an adopted cascade during the propagation propagation. Since

he users are tightly connected it is more likely that a user re-

ounces an adopted belief, as the influence exceeded by her neigh-

ors is greater. Similarly to the Sandy dataset, same trends are ob-

erved in the number of nodes sheltered regardless of the number

f misinformation originators. We observe in Fig. 7 that more mes-

ages concerning the credible information are propagated in the

etwork using REACT, which is expected, as the propagation of the

redible information from seeds with the Degree and GVS is re-

tricted, as suggested by Figs. 5 and 6 . 



I. Litou et al. / Online Social Networks and Media 2 (2017) 19–31 27 

Fig. 5. Number of Infected nodes (NetHepPh). 

Fig. 6. Percentage of nodes sheltered (NetHepPh). 

Fig. 7. Cost-Nodes receiving additional messages (NetHepPh). 
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.2. Execution times and time constraints 

In Fig. 8 a we present the execution times for the REACT ap-

roach in the Sandy dataset. We note that as the number of mis-

nformation originators increases, so does the execution time, but

nly slightly. Overall, the process requires less than 15 min. In

igure 8 b we present the corresponding results for the NetHepPh

ataset. We observe that in the NetHepPh dataset the execution

ime slightly increases, yet less than 23 min are required to esti-

ate a seed set of size k = 10 0 0 with 15% of the nodes as misin-

ormation originators. 

In Fig. 9 a and b we present the percentage of nodes sheltered

n the Sandy and NetHephPh network respectively, under different

ropagation time requirements. Results are similar for both 10%

nd 15% misinformation originators, hence we only present the re-

ults for 15%. We set the propagation time between any two nodes

n the network to be either tight, i.e., 2 min or relaxed, i.e., 5 min.

onstraining the time requirements between any two users affects

he adoption probability ( Eq. (2) ) and the time required for the

f  
nformation to propagate, i.e., the constraint of 2 min expresses

he emergency of a user informing her neighbors, as opposed to

. The results suggest that when time requirements are relaxed,

hen the number of users sheltered increases. The above observa-

ion becomes obvious in networks that present higher connectivity

nd longer paths between users, as is the case with the NetHephPh

etwork. 

.3. Seeds unwilling to share the credible information 

In Fig. 10 we present the percentage of nodes sheltered in case

eeds selected are unwilling to propagate the credible information.

or this set of experiments we set the time requirements to 5 min

elay at each edge. The probability that a user declines to initi-

te the propagation of the credible news is expressed as the initial

enouncement threshold of the user. A random probability r is gen-

rated for each seed u and if r u ≤ r, u participates in the credible

ews propagation. Results are similar for 10% and 15% misinforma-

ion originators on both datasets, hence we only present results

or 15% misinformation originators. On average 51% of the seeds
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Fig. 8. Time required for seed set selection. 

Fig. 9. Nodes sheltered under different time requirements. 

Fig. 10. Impact of seeds unwillingness to share the information. 
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accept to propagate the information on the Sandy dataset and 49%

on NetHepPh. In the Sandy dataset ( Fig. 10 a) we note that there is

a slight drop on the number of sheltered nodes, yet the trend re-

mains similar. As more seeds are added, the number of sheltered

nodes increases with at almost the same rate. However, we observe

that in the network of NetHepPh the impact of the seeds denial

to propagate the information creates an interesting behavior. From

0 to 850 selected seeds, with an average of 49% participating in

the propagation, i.e., 0–425 seeds, the number of sheltered nodes

increases at a steady rate. However, when more than 425 seeds

participate, there is a sharp increase in the number of sheltered

nodes. In particular, when a certain number of nodes is sheltered,

and herein block the misinformation propagation, the more limited

seems to be the spread of misinformation. This may be due the

tight connectivity of the nodes in the network. It is interesting to

note that this behavior is presented even when all seeds accept to
 t  
ropagate the credible news, although more smoothly, as observed

or the values between 250 and 400 seeds. 

. Related work 

Epidemic propagation models . Beutel et al. [28] study the prob-

em of competing ideas/viruses spreading in the network. In their

ork they examine the validity of the assumption the “winner

akes it all” made by most works that examine competitive models.

iven a variation of the SIS model that considers that a user may

e infected on either propagation campaigns, they aim in identify-

ng the fixed points for the system, in which both viruses can sur-

ive. Rapti et al. [29] consider the propagation of viruses in mul-

iple profile networks. In their work, users have different affinity

o a particular piece of information. By exploiting the SIS propaga-

ion model, they aim at determining the necessary conditions un-
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er which the virus reaches a particular equilibrium state. They ex-

mine special network topologies, i.e., clique and arbitrary graphs

ith low and high connectivity, to extract the necessary condi-

ions. In this work, users affinity remains fixed, while in our work

e consider it to be varying over time and it is presented through

he renouncement value. Moreover, we consider the spread of con-

icted information through the LT model, i.e, users may not be

usceptible on a single information, but on both competitive in-

ormation diffused in the network. Moreover, in this work we aim

t identifying the subset of users to initiate a propagation so that

he spread of the conflicted information is minimized. Myers et al.

30] examine how different contagions interact with each other

s they spread through the network. A statistical model is pro-

osed that allows for competition as well as cooperation of differ-

nt contagions in information diffusion. A mixing model is devel-

ped, where the probability of a user adopting a piece of content

s based on what other content the users was previously exposed.

t is assumed that the infection probability does not change from

ser to user. 

Competition using independent cascading and linear thresholds.

lark et al. [31] exploit a Game-Theoretic approach to estimate the

est strategy players should deploy in competitive environments,

o as to maximize their influence in the network. They propose

he Dynamic Influence in Competitive Environments (DICE) prop-

gation model, where each user has the ability to hold multiple

deas with different probability. The DICE model uses Markov pro-

esses to model the propagation of ideas through a social net-

ork. LT and IC model constitute special cases of the DICE, where

sers hold a single idea. For the special case of social graphs with

trongly Connected Components, the suggested objective function

f the players is submodular. In their work, competing players may

hoose to add seeds to maximize influence, while our objective is

o block the influence of a specific idea. Moreover, we consider that

isinformation spread is unintentional and therefore not strategic,

hus, no utility function can be determined for the seeds of the

isinformation. He et al. [15] study the Influence Blocking Max-

mization (IBM) problem. They suggest the Competitive Linear

hreshold (CLT) propagation model. Each vertex in the social graph

s assigned a threshold and each edge is associated with a nega-

ive and a positive weight. Users may be positively or negatively

ctivated, depending on which activation is triggered first. In cases

oth activations reach the threshold simultaneously, the negative

revails over the positive. In their model they assume that there

o independent paths may exist between nodes of the seed set

o other nodes, i.e., if there are multiple paths between any two

sers, then the one is sub-path of the other. Moreover, time is

nly considered in the seed selection process, while during propa-

ation it is expressed as the number of hops in the path. Lin et al.

32] study the problem of influence maximization under the Com-

etitive Linear Threshold (CLT) model, but define CLT slightly dif-

erently than the work [15] . A node is activated by the party that

as the highest overall influence and exceeds the threshold of the

ser. They assume that if a node is activated by a party, it can-

ot be activated again by another party. Players select seeds in-

erchangeably. That is, they define a multi-round multi-party influ-

nce maximization problem. 

Fan et al. [8] study the rumor blocking problem in OSNs. Their

oal is to select the minimal subset of users, referred as Protectors ,

n order to minimize the propagation achieved by Rumor Origina-

ors . They define the One-Activate-One and One-Activate-Many dif-

usion models and deploy Breadth First Search (BFS) to Rumor For-

ard Search Trees to locate bridge ends. In their model protectors

nfluence has priority over rumors when both reach a user in the

etwork simultaneously. In contrary to their work, we consider the

umber of protectors given and aim at locating the more appro-

riate seeds. Similar to the work in [8] , Nguyen et al. [5] aim at
dentifying the smallest set of protectors to contain the spread of

isinformation to a desired ratio 1 − β in T steps. As in [8] they

ssume that credible information takes over when a node is simul-

aneously informed about both pieces of information. Their goal is

o find the smallest set of highly influential nodes whose decon-

amination with good information assists in limiting the spread of

isinformation to a desired ration 1 − β in T steps. To achieve the

bove objective they propose a Greedy Viral Stopper algorithm that

tilizes a modification of the hill-climbing algorithm and a com-

unity bases approach that greedily selects nodes form each com-

unity. Butak et al. [9] aim in the limitation of misinformation in

SNs under the Multi-Campaign Independent Cascade model. Con-

idering the evolving propagation of competitive campaigns, their

oal is to select the appropriate subset of nodes so that the even-

ual influence of the misinformation campaign is minimized. They

efer to this problem as Eventual Influence Limitation. In their

odel, each of the competing cascades follows the Independent

ascade model and whenever a node is influenced simultaneously

rom both campaigns, then it is assumed that the ”good” cam-

aign prevails. Moreover, after a node adopts a belief, its state re-

ains constant throughout the propagation process. They further

rove the performance of their approach in the presence of miss-

ng data, where states of nodes are know with a certain probabil-

ty. Zhang et al. [33] suggest an approach to limit misinformation

hile maximizing the spread of good information in the network.

hey initially identify a set of Getaway Nodes , that are the nodes

hat contribute to further propagation of misinformation and of-

er the greatest marginal gain to the spread. The gain is estimated

s the number of incident nodes activated by the Getaway Nodes.

iven the Getaway nodes, their goal is to select a subset of users

o initiate the credible propagation so that the Gateway nodes are

ositively activated before the misinformation reaches them. 

Borotin et al. in their work [34] propose extensions of the Lin-

ar Threshold propagation model to formulate competitive influ-

nce cascades in the network. They define a competitive model

hat a user adopts a technology if the the collective weight of

eighbors that adopted the technology exceeds the users thresh-

ld. Time-constraints are ignored in their model and a user that

dopts a specific technology may not switch state afterwards. They

urther define a variation of LT model where users have different

hresholds for each technology propagated in the network and an

lternative of the latter, where at the end of each propagation all

nactive users are randomly choosing a technology and adopt it.

athak et al. [35] suggest a Generalized Linear Threshold Model for

ultiple cascades in social networks that allows users to switch

tates regarding the adopted cascade. The subject of their study

s to estimate the equilibrium of the different cascades. Users re-

uctance in adopting a new idea remains constant, regardless of

he users prior believes alternation. Finally, the way opposing cam-

aigns correlate to the users conviction is ignored. 

Influence maximization. In our previous work [19] we study the

roblem of efficient information dissemination in location-based

ocial networks under time constraints. The objective is to iden-

ify a subset of individuals to propagate the information and make

ntelligent route selection that can result in maximizing the reach

ithin a time window. The underlying propagation model is the

ndependent Cascade propagation model and any contradictory

ropagation is ignored. Li et al. [36] address the problem of real

ime targeted influence maximization for online advertisements.

heir goal is to find a seed set that maximizes the expected in-

uence over users who are relevant to a given advertisement. The

ndependent Cascade model is exploited to characterize the dis-

emination of the information to the network and user profiles

xpress user preferences. The preferences of the users are consid-

red in order to estimate the probability of a user being effectively

nfluenced on a specific topic that is propagated on the network.
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Gayraud et al. [37] study the problem of influence maximization in

evolving Social Networks. They show that when considering evolv-

ing networks the diffusion function is no longer submodular for

the transient models and for the transient Independent Cascade

model is neither monotone. They assume that the entire graph se-

quence is known in advance and aim in selecting a subset of users

to initiate the propagation so that the final number of users acti-

vated under any diffusion model is maximized. Chou and Chen [38]

propose a Multiple Factors-Aware Diffusion model to determine

the diffusion of a content over Social Networks. For each user they

exploit a probabilistic classifier that considers multiple predefined

features that affect the tendency o user adopting adopting an item

after she is exposed to it. Chen et al. [39] develop a community-

based influence maximization (CIM) framework, to tackle the prob-

lem of influence maximization by exploiting the graph structure.

Specifically, they discover the community structure of the network

and exploit the detected communities to narrow down the possi-

ble seed candidates and later select the best seed nodes from the

candidate set. To capture the temporal process of information dif-

fusion they consider the heat diffusion model (HDM). 

8. Conclusions 

In this paper, we propose an approach for misinformation lim-

itation that is aware of two important dimensions, currently ne-

glected by the related work. The first one is that propagation time

differs among the users of a social network. The second is that

users’ susceptibility to new information should dynamically adapt

over time. Considering the aforementioned dimensions in propa-

gation unfolding in the social networks, we design a propagation

model that manages to capture the way contradictory informa-

tion unfolds in the network, namely the Dynamic Linear Thresh-

old (DLT) model. DLT, unlike existing models, considers the aspect

of users’ hesitation in adopting and further propagating a specific

piece of information when they are exposed to directly opposing

information. Given DLT, we develop REACT (REal-time And CosT-

effective misinformation blocking), a greedy seed selection algo-

rithm that identifies the appropriate subset of users contributing in

the minimization of misinformation spread. We provide theoretical

and experimental results that prove and demonstrate the efficiency

and effectiveness of our algorithms. Specifically, we formally prove

that REACT achieves a constant approximation ration of 1 − 1 /e to

the best solution under the DLT propagation and we contact a set

of experiments in two real-world networks that showcase the su-

periority of REACT to state-of-the-art approaches for misinforma-

tion blocking under various scenarios. 

Our research agenda includes a number of challenging prob-

lems to be addressed in future work. An interesting problem to

consider is the case of the dynamic nature of the social graph.

Links between users in the network are constantly generated or

disappear and even the influence probabilities vary over time,

leading to constant updates on the structure of the graph that

should be consider during the misinformation blocking process.

Another interesting issue is the case of non-credible users identifi-

cation in real time, which requires the analysis of both information

and users’ validity. 
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