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ABSTRACT

The increasing pervasiveness of GPS-enabled devices results in
the collection of massive trajectories datasets. The vast amount of
the generated location data is particularly difficult to be processed,
interpreted and analyzed, due to its complexity. Nevertheless, in
many cases a considerable number of moving objects share common
paths and their whole trajectory can be decomposed as a sequence of
such commonly accessed paths, referred as corridors. In this paper
we formulate the problem of corridor discovery using GPS data that
represent user trajectories. We initiate research for developing an
algorithm to solve this problem efficiently and we present initial
experimental results that demonstrate our approach.
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1 INTRODUCTION

In recent years the constantly increasing usage of ubiquitous com-
puting devices that trace the moving objects’ locations creates volu-
minous collections of trajectory data. A wide range of applications
needs to access, use and process these data. For instance, in smart
cities the traffic operators monitor buses” GPS positions [17] in order
to detect traffic anomalies, while in zoological studies zoologists
investigate animals’ movements in order to detect their interactions
with the ecosystem [5]. The massive amount of the unstructured
trajectory data make it difficult to organize, process and understand
the objects’ movements (i.e. taxis, animals and pedestrians trips).
Consequently, it becomes important to develop novel techniques and
algorithms able to detect patterns in the objects’ movement.

In this paper we describe a novel approach towards detecting fre-
quent paths from a trajectory database. We refer to such frequently
followed paths as “corridors™. A corridor can be thought as a route
that is commonly traversed by a considerable number of moving
objects. Consider, for example, 5000 buses’ trajectories at the city
of Dublin, illustrated at the left part of Fig. 1. Our approach sum-
marizes the provided trajectory dataset, detecting the set of the most
frequently followed corridors. The right image of Fig. 1 illustrates
the output of our approach showing the 50 most frequent corridors
of buses’ movements. It is particularly difficult for a human to un-
derstand what are the main flows of vehicles, just by plotting the
trajectories on top of a map. Our approach is able to summarize the
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Figure 1: Buses’ trips at Dublin (left) and the 50 most frequent
corridors (right) detected by our approach.

raw data providing as output to the user an abstract view of the main
objects’ movements, that highlight the moving patterns.

We describe below our desiderata for learning corridors from a
collection of trajectories: (i) Objects moving in unconstrained space:
We assume that the moving objects can move in space without a road
network constrain. (ii) Mining massive trajectory datasets: Moving
objects generate large collections of movement data, thus a corridor
learning technique should be capable to cope with large datasets of
trajectories. (iii) Discover a set of corridors: Our technique focuses
in discovering corridors that simplify the incomprehensible large
collection of trajectories. This facilitates the understanding of the
main mobility patterns.

It should also be mentioned that we either partition the trajectories
into “trips” or we assume that we get them as “trips”. A simple
technique to get “trips” from a trajectory is to detect the points
where the user stayed for a while and split there the trajectory [15].

The contributions of our approach are described below: (i) Sum-
marizing a vast trajectories’ database returning as output the set of
corridors that represent the major movement patterns. (ii) Formally
define the problem of learning corridors using the MDL principle;
equating the corridors learning with the compression of the trajecto-
ries’ database.

2 BACKGROUND AND RELATED WORK

Trajectory Pattern Mining. Research work in trajectory data min-
ing can be distinguished into two main categories. The first one
assumes that the objects are moving in a known, well structured road
network, while the second assumes that such information does not
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exist or is not provided and the objects are moving in the uncon-
strained space.

Road Network: Chen et al. in [6] proposed a technique that com-
putes a dictionary of pathlets, solving a constrained optimization
problem. As pathlet they defined a fraction of the path. The pathlets
were used to reconstruct the trajectories, compressing the trajecto-
ries’ dataset. This work is the closest to our approach but assumes
knowledge of an underlying map. Evans et al. in [7] studied the prob-
lem of summarizing a set of trajectories, that move on top of a road
network, detecting k-Primary Corridors. They initially computed a
track similarity matrix and then k-medoids clustering algorithm is
applied to detect the k-PC.

Unconstrained Space: Lee et al. [11] proposed a trajectory cluster-
ing algorithm, named TRACLUS that discovers common subtrajecto-
ries from trajectories databases. TRACLUS contains two main steps:
(i) partition a trajectory into a set of subtrajectories, adopting the
MDL principle (ii) group the different subtrajectories together using
a clustering algorithm that bares a lot of similarities with DBSCAN
clustering algorithm. Lastly they returned a representative trajectory
for each cluster.

Additionally the problem of summarizing trajectories in corridors
has been investigated in [16]. In order to extract the corridors they
segemented trajectories into subtrajectories using a mesh grid, then
they grouped subtrajectories into clusters using an agglomerative
clustering algorithm that considers their discrete Fréchet distance,
creating clusters of similar movement. Finally the corridors were the
sequences of the detected clusters with similar starting/ending loca-
tions. In [8] the authors transformed the trajectories into sequences
of regions of interest and they found frequent patterns in these se-
quences considering the travel times. The authors in [4] proved that
the problem of finding subtrajectories’ clusters is NP-Complete.

Gudmundsson et al. [9] proposed a pipelined algorithm for cluster-
ing movement data, the algorithm splits trajectories in subtrajectories
and provides labels for each subtrajectory according to its geometric
property (i.e. sharp left turn). Then trajectories are transformed in
sequences of these labels used to detect frequently occurring strings
(motifs). Finally DBSCAN algorithm is applied in order to detect
similar subrajectories. Another work that aims to identify paths
followed by many tracked objects was presented in [2]. The authors
used the Fréchet distance in order to calculate the distance between
two subtrajectories. Then an Apriori-based algorithm is proposed in
order to detect sets of subtrajectories that form a trajectory clique.
Mamoulis et al. [12] transformed trajectories to sequences of re-
gions and they detected periodic patterns in these sequences applying
association rule mining.

3 PROBLEM DEFINITION

In this work we propose an efficient algorithm for detecting the
main patterns of movement. The proposed framework receives as
input a trajectory Database D = {T1, Ty, ..., Ty} that contains N
trajectories and detects a set of paths H, named corridors, that are
frequently followed by the moving objects of D.

A Trajectory T; : cicp . . . cp,» is a time ordered sequence of M;
coordinates of the i moving object. Originally the trajectories’
coordinates lie on a two dimension Cartesian plane, ¢ € R?.

Nikolaos Zygouras and Dimitrios Gunopulos

In this work we decided to discretize the coordinates’ space in
order to facilitate the exploration of hidden patterns in the objects’
movements. We applied a grid of uniformly sized cells, mapping
the coordinates to discrete grid cells.

Definition 3.1. (Corridor): A corridor F € H is an induced
trajectory that connects two coordinates through a dense path that
was frequently followed by a considerable number of moving objects
in D. In more detail a corridor satisfies the following properties:

o Induced: there is not necessarily any other trajectory identi-
cal with F in D, but is constructed capturing and aggregat-
ing the underlying information from the objects’ movement.

e Dense: two consecutive grid cells of a corridor should be
spatially close to each other .

o Frequently followed: a considerable number of trajectories
in D contain subtrajectories that share the same movement,
captured by F.

Consider for instance the 4 trajectories visualized in Fig. 2. It can
be observed that even though they have different origins and destina-
tions they contain subtrajectories that share a common movement
behaviour at the marked area. Furthermore a corridor that describes
the objects’ movement at this area can be induced (dense black arrow
in Fig. 2), aggregating the information from the subtrajectories of
the marked area. Our proposed framework is able to detect a set of
such corridors H, given a collection of trajectories D.

Figure 2: Example of 4 trajectories, that have different origins
and destinations bus share a common path (corridor).

Given a trajectories database D, a set of corridors  and a dis-
tance threshold §; we define the compressed dataset D| 7, that is
constructed replacing the subtrajectories of trajectories T € D cov-
ered by a corridor F € H with a pointer to F. A corridor F is said to
cover a part or all the trajectory T if its similarity with any possible
subtrajectory of T exceeds a threshold 6,: max(d(F,s)) > 6, Vs €
subtrajectories(T). The similarity d(-,-) could be any similarity
measurement that measures the similarity between two trajectories.
In this work we selected to use the LCSS.

Problem Definition: Given a set of sparse trajectories D moving
in the unconstrained space, assuming no time find the set of corridors
H that minimizes the sum of L(H) and L(D|H), where L(-) is the
length of a data collection in bits.

We adapt above the Minimum Description Length (MDL) princi-
ple [13] in order to formally define our problem, viewing learning
as data compression.

4 LEARNING CORRIDORS

In this Section we give a preliminary description of our approach.
‘We describe our architecture, for detecting a set of corridors, that
can be decomposed into two main processing modules. More specif-
ically in Section 4.1 we describe how to detect, from a given set of
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trajectories, frequent sets of locations that are frequently visited by
similar trajectories. In Section 4.2 we present how a set of corridors
is detected aggregating the information from the similar parts of the
given trajectories.

4.1 Discovering Frequent Sets of Locations

The first step towards detecting corridors is to decompose the space
in different sets of locations frequently observed together in the
objects movements. Call these sets of locations frequent sets of
locations [1]. LDA is applied at the trajectories domain in order to
detect K frequent sets of areas that share common traffic. Our LDA
formulation is analogous to the typical NLP formulation where grid
cells replace words, trajectories replace documents and frequent sets
are analogous to topics. Our main intuition is that sets of neighboring
grid cells could be grouped together into hidden frequent sets of
locations and each trajectory can be modelled as a mixture of these
frequent sets of locations.

4.2 Corridors Mining

4.2.1 Trajectories Segmentation. Below we describe how a
trajectory is segmented into subtrajectories. Our approach creates a
set of subtrajectories for each frequent set, that will be aggregated
later to detect the set of corridors H. Our method searches for
intersecting cells between the trajectory and the cells of each frequent
set. A subtrajectory for a frequent set k is generated from the cells
of a trajectory T; between the first and the last matched cells of T;
and the cells that are associated with frequent set k. If T; contains
more than anp consecutive cells not matched, with the cells of the
frequent set, then the trajectory is split further in 2 subtrajectories .

4.2.2 Grouping Subtrajectories. Here we describe how dif-
ferent subtrajectories are grouped together based on their similar
movement along the grid cells of a frequent set. We applied the
hierarchical clustering algorithm [10] to the set of subtrajectories of
each frequent set, following a bottom-up approach. The algorithm
stops merging clusters when the intra-cluster distances exceed a
threshold 6,;. We selected here to use Dynamic Time Warping
(DTW) [3] in order to measure the distance between two trajectories.
The distance between two cells is measured using the Manhattan
distance. DTW is able to distinguish the different directions of move-
ment and assign lower distance to the trajectories that have similar
shape and ordering of locations. To speed up the computations we
used the algorithm presented in [14], computing the DTW distance
between two trajectories using the R-tree index, inserting in the
R-tree smaller Minimum Bound Rectangles (MBRs) that surround
the whole trajectory.

4.2.3 Corridors Induction. Given a cluster of trajectories, char-
acterized by their similar movement across the cells of a particular
frequent set; our objective is to induce a set of corridors. The objects’
low GPS sampling rates complicates the corridors’ detection, creat-
ing “uncertainty”” on how objects moved among the GPS samples.
Our approach transforms sparsely sampled trajectories (Fig. 3-i) in
dense and informative trajectories (Fig. 3-ii) that describe in detail
the objects’ movement, using a set of similar trajectories (Fig. 3-iv).

In order to reduce the trajectories’ uncertainty we follow a graph-
based approach. A directed edge-weighted graph G = (V,E) is
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Figure 3: Example of a sparse uncertain movement (i) that is
reconstructed to a detailed trajectory (ii), using the graph G
(iii), generated from a bunch of sparse similar trajectories (iv),
considering both the cells density (v) and the direction and the
frequency of the cells’ successors (vi).

constructed for each detected cluster. G comprises from a set of
vertices V' that correspond to the cells that trajectories accessed and
a set of directed edges & that connect different adjacent grid cells.
The weight w, that is assigned to each edge e = (v1,v2), depicts
the likelihood of moving from v; to v,. The weights are mined
from the cluster’s subtrajectories. Higher weight is provided for the
neighboring grid cells that have been visited more frequently. For
instance a higher weight will be assigned to the most visited cells of
Fig. 3-v. Also greater weight is assigned to the grid cells that have
similar direction with the direction of the majority of the cluster’s
moving objects that departed from the under investigation cell v
(Fig. 3-vi). Finally the most likely path that the object followed
between two non adjacent consecutive grid cells is detected posing a
shortest path query over the graph G.

Finally a set of corridors C is extracted for each cluster. We
complete each one of the cluster’s subtrajectories, posing shortest
path queries to G if two consecutive nodes of the subtrajectories are
not adjacent. Each detailed path is inserted in the set of corridors C
if the minimum distance from any of the already inserted corridors
in C does not exceed the distance threshold 6.

5 EVALUATION

In this Section we present our initial experimental results that evalu-
ate the performance of our approach. We used ten different syntheti-
cally generated benchmarks in our experiments. Each one of them
contained different number of dense patterns DP and noisy patterns
NP. Each dense pattern is followed by 15 trajectories, while each
noisy pattern is followed by a single trajectory. The ten benchmarks
were generated combining 5, 10, 20, 40 or 80 dense patterns with
0 or 200 noisy patterns. In the experiments presented bellow we
denote as COR the experiments that do not contain noisy patters and
as COR-Noisy, those experiments that contain noisy patterns.

Evaluation Metrics: In order to measure the quality of the proposed
techniques we measure the following: (i) MDL: referring to the
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Figure 4: Buses moving at the upper bank of Liffey river in
Dublin, and the detected corridor (highlighted yellow line).
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Figure 5: The Coverage Length by the detected corridors (left)
and the corresponding MDL scores (right).

achieved compression, given by the following equation:
_ LH)LDOIH)
LD

Obviously our objective is to find a set of corridors H that minimizes
the MDL score. (ii) Coverage Length: represents the percentage of
the synthetic patterns that is captured by the detected corridors.
Detecting Common Behavior: The movements of several buses at
the city of Dublin are illustrated in Figure 4. The buses have dif-
ferent origins and destinations but they share a common movement
behaviour, captured by the proposed technique. The detected pattern,
at the upper bank of Liffey river, is followed by different bus lines
transporting citizens from the west part of Dublin to the city centre.
Experimental Results: Here we describe the performance of the
proposed technique on the synthetic datasets. Initially the left part
of Fig. 5 illustrates the percentage of the patterns’ length covered
by the detected corridors for the datasets with and without noisy
trajectory patterns, COR and COR-Noisy respectively. As we can
see the detected corridors detect almost all the given dense patterns,
irrespective of their number or the existence or not of noisy patterns.
The MDL scores that our approach achieves are visualized at the
right part of Fig. 5. We observe that the detected corridors capture
the dense patterns resulting in low MDL score. Finally we can see
that the MDL score is not affected by the existence of noise, except
from the noisy benchmark that contained 5 dense patterns, where
the amount of noisy trajectories (200) is much larger than that of the
dense patterns (75).

MDL (N
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6 CONCLUSION

In this work we proposed a pipelined approach for detecting a set of
frequently accessed corridors from a vast collection of trajectories.
Initially we applied a well known topic modelling technique to detect
frequent sets of locations and then we derived frequent paths at these
locations. Our initial experimental results demonstrate the ability of
our approach to summarize a large collection of trajectories to a few
number of frequently accessed paths.
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