
Dione: A Framework for Automatic Profiling and
Tuning Big Data Applications

Nikos Zacheilas, Stathis Maroulis, Thanasis Priovolos, Vana Kalogeraki
Department of Informatics

Athens University of Economics and Business

Athens, Greece

Email: {zacheilas, maroulise, priovolos, vana}@aueb.gr

Dimitrios Gunopulos
Department of Informatics

and Telecommunications

University of Athens

Email: dg@di.uoa.gr

Abstract—In this demonstration we present Dione a novel
framework for automatic profiling and tuning big data appli-
cations. Our system allows a non-expert user to submit Spark
or Flink applications to his/her cluster and Dione automatically
determines the impact of different configuration parameters on
the application’s execution time and monetary cost. Dione is
the first framework that exploits similarities in the execution
plans of different applications to narrow down the amount of
profiling runs that are required for building prediction models
that capture the impact of the configuration parameters on the
metrics of interest. Dione exploits these prediction models to
tune the configuration parameters in a way that minimizes the
application’s execution time or the user’s budget. Finally, Dione’s
Web-UI visualizes the impact of the configuration parameters on
the execution time and the monetary cost, and enables the user
to submit the application with the recommended parameters’
values.

I. INTRODUCTION

In this demonstration we present Dione, our framework

for profiling and tuning big data applications that run on

distributed systems like Apache Spark1 and Apache Flink2.

Dione was developed in the context of the Vavel EU-funded

project3, to efficiently monitor and optimize the execution of

Spark and Flink applications that analyze voluminous urban

data coming from multiple heterogeneous input sources (e..g.,
bus sensors, CCTV cameras) [1].

Recent works [2], [3] have shown that system parameters

such as the number of worker instances and the allocated

memory can greatly affect the execution time of the applica-

tions and cause significant degradation in their performance, if

not properly configured. Therefore, it becomes imperative to

appropriately tune these parameters to avoid penalizing the ap-

plication’s performance. However, the tuning procedure can be

a cumbersome task for non-expert users as they are typically

familiar with specific systems (such as Hadoop4 or Spark),

lack knowledge of the underlying system architecture [3] and

auto-tuning frameworks like [2] rely on the availability of

historical data to use in the tuning process.
The problem becomes more challenging when applications

execute on public cloud infrastructures like Amazon’s EC25.

In such environments users are charged on a per hour basis

1 http://spark.apache.org/ 2 https://flink.apache.org/
3 http://www.vavel-project.eu/ 4 http://hadoop.apache.org/
5 http://aws.amazon.com/ec2/

based on the amount of nodes they reserve. So apart from

the application’s execution time, the monetary cost is another

metric that should be considered when tuning the config-

uration parameters and submitting big data applications in

the cluster [4]. For example, we expect that users in such

environments would want to know (a priori to the application

submission) the appropriate parameters’ values (e.g., how

many Virtual Machines to reserve) so that they better achieve

their objective (expressed as minimizing the monetary cost or

the applications’ execution times).

Dione is a framework that tackles the aforementioned issues

and is able to efficiently profile and tune the configuration

parameters of big data applications that have been imple-

mented for big data processing systems (such as, Apache

Spark and Apache Flink). The main contributions of Dione
are the following:

• Dione utilizes prediction techniques [5] to estimate the

impact of basic configuration parameters such as the num-

ber of reserved nodes on the applications’ execution time

and spending budget. It further minimizes the number

of the necessary profiling runs for building an accurate

prediction model exploiting the Bayesian optimization

technique [6] .

• It is the first framework that exploits similarities between

the execution plans of already executed applications and

newly submitted ones. The idea is to utilize an already

trained prediction model for the new application, if pos-

sible, and thus avoid the time-consuming procedure of

building a new prediction model [7]. To compute the sim-

ilarity between the applications’ execution plans (which

can be seen as a Direct Acyclic Graph of processing op-

erations) Dione measures the Graph Edit Distance (GED)

metric using a well-known approximation technique [8].

• Dione determines the configuration parameters to meet

the user’s objective (i.e., minimize the user’s spending

budget or the application’s execution time) using a Hill

climbing algorithm that we have developed [3]. The user

is then prompted to submit the application with one of

these suggested configurations.

• Finally, Dione provides a rich Web-UI that enables the

user to submit Spark and Flink applications to his/her

1637

2018 IEEE 34th International Conference on Data Engineering

2375-026X/18/$31.00 ©2018 IEEE
DOI 10.1109/ICDE.2018.00195

Worker

Profiling
Component

Web-UI

Tuning
Component

Graphs
Comparison

Model
Builder

Prediction Component

Fig. 1. Dione’s high level overview.

cluster. For monitoring the applications we utilize the

APIs provided by the two distributed systems we support

(i.e., Spark and Flink) and also the Ganglia monitoring

system6 which provides lower granularity metrics like

the CPU and RAM usage in the cluster. Furthermore,

Dione’s Web-UI provides a wide variety of diagrams that

illustrate the effect of the tuning of the configuration

parameters on the metrics of interest and also displays

the parameters’ values recommended to the end-user via

our tuning algorithm [3].

II. SYSTEM DESCRIPTION

A. System Overview

As we illustrate in Figure 1, Dione is implemented as mid-

dleware between the end-user and a Spark or Flink cluster. We

consider big data applications where the data to be processed

are stored in a distributed filesystem like Hadoop’s Distributed

File System (HDFS). Dione consists of three main components

and a Web-UI for providing the results to the end-user.

Dione works as follows. The user submits through the

Web-UI the application he/she is willing to run (e.g., the jar

containing the implementation of the application). Then Dione
is responsible to examine the impact of the number of reserved

CPU cores, the allocated memory per node and the input data

size on the application’s execution time and monetary cost by

building the appropriate prediction model. Afterwards Dione
tunes the parameters and informs the user via the Web-UI
about the recommended parameters’ values.

The Profiling Component monitors the execution of submit-

ted applications on the Spark or Flink cluster. It retrieves the

application’s execution times and the configuration parameters

that are utilized using the monitoring APIs provided by the two

frameworks and exploits the Ganglia monitoring system for

gathering lower granularity metrics like the nodes’ CPU and

RAM usage. The monitor results are used by the Prediction
Component to estimate the applications’ execution times and

spending budget for different configuration parameters. The

Prediction Component comprises two sub-components, the

Graphs Comparison and the Model Builder sub-components.

The main idea is to either exploit prediction models that we

6 http://ganglia.sourceforge.net/

have already built for applications that perform similar pro-

cessing (e.g., applications that implement different variations

of the alternative least squares recommendation algorithm)

using the Graphs Comparison component, or determine the

profiling runs (i.e., using different combinations of the pa-

rameters we consider) using the Model Builder component

that should execute in the Spark or Flink cluster in order

to build an accurate prediction model. After the model has

been created we use it to estimate the execution time and

the spending budget for all the different combinations of

the examined parameters and visualize the results using the

Web-UI component (as we illustrate in Figure 1). Finally,

Dione uses the Tuning Component to adjust the application’s

configuration parameters to meet the user’s objective (i.e.,
minimize the spending budget or the application’s execution

time). More specifically, the Tuning Component exploits the

prediction model that has been created by the Prediction

component to determine the appropriate parameters’ values

and the user is informed about them via the Web-UI.

B. Implementation Details

Graphs Comparison. Whenever a Spark or Flink application

is submitted to Dione we retrieve its execution plan exploiting

the corresponding API. The application’s execution plan is

a directed acyclic graph (DAG) that consists of all the op-

erations (i.e., actions and transformations as defined in Spark

terminology and dataset transformations in Flink terminology)

that are performed. The Graphs Comparison component is

responsible to compare the newly submitted application’s

execution plan with plans we have gathered for previously

executed applications. The idea is to find the most similar

execution plan and exploit an already trained prediction model,

if such a model exists, thus avoiding the costly procedure

(both in terms of time and monetary cost) of building a new

prediction model.

Our goal in the Graphs Comparison component is to exploit

the fact that different applications have similar execution

graphs and this similarity in the execution order of the

processing operations can lead to similar execution times. To

compute the similarity between two graphs we use the Graph

Edit Distance (GED) [8] metric as it is the most appropriate

measure for depicting the distance between graphs. GED is

measured as the minimum amount of required distortions to

transform one graph into the other. The computation of GED

has exponential complexity as the problem of measuring the

graph edit distance is NP-hard [8]. Therefore, the direct com-

putation of the GED metric will take unacceptable amount of

time for large graphs. For this reason we use an approximation

technique that is able to approximate the GED between two

application graphs in polynomial time [7].

Model Builder. In the case that the Graphs Comparison
component is unable to find a similar previous execution plan

(i.e., distance smaller than a threshold) then we have to build a

new prediction model for the submitted application. The Model
Builder component is used for solving this problem. In order to

build accurate prediction models we need to execute profiling

1638

runs and gather the necessary training data. However, profiling

runs cost both in terms of money and time. In Dione we cope

with the issue of gathering training data by minimizing the

number of combinations tested for building the model, so that

we reduce the overhead of the training phase in terms of its

duration. More formally, let f(�x), �x ∈ X be the function that

depicts the application’s execution time, �x is the vector of

the configuration parameters (i.e., currently, we consider the

number of reserved CPU cores, the memory and the input

data size as our configuration parameters) and X is the set

containing all the possible combinations of the configuration

parameters that can be evaluated. Our goal is to determine

a set X
′ ⊂ X that we will use as training dataset for the

prediction model that will approximate f(�x).
We decided to use the Bayesian optimization technique [6]

in our Model Builder to solve this problem. The main idea of

this approach is to incrementally build a probabilistic model

that reflects the current knowledge of the objective function

(in our case the execution time of the application) until some

convergence criterion is met. In our case we decided to use

a Gaussian process as our probabilistic model as we have

efficiently applied it for estimating the latency of stream

processing applications in our previous work [5]. The Bayesian

optimization algorithm executes three steps in each iteration.

First, it performs a numerical optimization to find a point in the

parameters’ space which maximizes an acquisition function.

We use the expected improvement function which returns the

expected value of the improvement brought by evaluating f(�x)
over the best value n found so far:

a(�x) = E(max(0, f(�x)− n)) (1)

We find the �x′
point which maximizes a(�x) using a numerical

optimization algorithm. After we have found this �x′
point, we

measure the execution time of the application when the �x′

parameters are utilized and then update the Gaussian process

model. We stop the algorithm’s iterations when we have

reached the convergence criterion which in our case is a user-

defined upper limit on the profiling phase’s execution time.

Tuning Component. For determining the appropriate param-

eters (i.e., the number of CPU cores and the per worker

memory) that should be utilized by an application we apply

a greedy Hill climbing algorithm that we have previously

utilized for tuning the reduce tasks of MapReduce jobs [3].

For minimizing the application’s execution time the idea is

to initially start with the minimum resources and gradually

increase them by a step size (i.e., by adding one CPU core at

each iteration) until we do not observe any improvement. For

the budget minimization we follow the inverse procedure we

start with the case that all resources have been reserved and

then gradually decrease them as long as we observe a decrease

in the user’s spending budget.

III. DEMONSTRATION PLAN

In this demonstration, users will be able to interact with

Dione through its web interface. More specifically, we will be

using a laptop in order to demonstrate the front-end of Dione

Fig. 2. Dione’s applications submission page.

and our 8 nodes Spark and Flink cluster (i.e., Spark 2.0.2,

Flink 1.3.1) for running the users’ applications. The cluster

consists of 1 master node and 7 worker nodes. Each node is

equipped with 8 CPU processors (i.e., Intel(R) Core(TM) i7-

3770 CPU @ 3.40 GHz) and 16 GB RAM. The master node

also hosts the Apache server that is necessary for running

Dione’s Web-UI which was implemented using a number of

Javascript libraries.

Users will be able to submit applications to our cluster via

our submit applications page (i.e., see Figure 2). More specif-

ically, the users will provide the input and output path of their

application, the jar containing the application’s implementation

and also the program’s entry point (i.e., the main class).

Furthermore, the users will specify the maximum number

of workers in the cluster and the CPU cores/memory per

worker. These parameters will enable Dione to determine the

range of the configuration parameters that will be examined.

Furthermore, the user will have to to indicate whether the

submitted application will be a Spark or a Flink application.

Once the application has been submitted to Dione, the

user has to wait for the Prediction Component to run and

create a prediction model for estimating the execution time

and spending budget of the submitted application. When the

prediction model has been built, the user will be transferred

to the results page where he/she can observe the impact

of the different parameters on the two metrics of interest.

Dione’s Web-UI provides both 3D (i.e., Figure 3) and 2D (i.e.,
Figure 4) diagrams so that the user can observe and understand

the impact of the CPU cores, memory and input data size on

the spending budget and the application’s execution time. In

Figures 3 and 4 we display the results when an alternative least

squares (ALS) application is submitted to Dione. Furthermore,

as can be observed in Figure 5, Dione will suggest the

configuration parameters (e.g., the number of CPU cores and

memory) that minimize either the spending budget or the

application’s execution time (i.e., using the Tuning Component
we described in Section II-B).

At the bottom of the results page, as we illustrate in

1639

Fig. 3. Interactive 3-D plots that can be used for studying the impact of
the configuration parameters on the metrics of interest.

Fig. 4. Impact of the reserved CPU cores on the execution time and spending
budget for varying input data size.

Fig. 5. Dione’s suggested parameters for varying input data size. Fig. 6. Application that runs in the Spark cluster with the chosen parameters.

Fig. 7. Similar application graphs detected by Dione.

Figure 5, the user will be prompted to submit the application to

the cluster with his/her chosen parameters. Afterwards, he/she

will be able to observe the application’s execution in the

Spark (or Flink) cluster by clicking the corresponding button

in the Web-UI (see Figure 6). Furthermore, we also have a

link to the Ganglia monitoring framework so that the user

can easily examine the resource usage (e.g., CPU utilization,

I/Os) in the cluster during the application’s execution. Finally,

when an application with a similar execution plan has been

detected by the Graphs Comparison component then the

user will see the similar operations of the two graphs, by

clicking the Application Graphs button. In this web page, as

we highlight in Figure 7, the user can see a subset of the

processing operations (e.g., map transformations) that occur

in both graphs. In Figure 7 we illustrate the similarity in the

graphs of two Spark applications (i.e., two variations of the

alternative least squares recommendation algorithm). As can

be observed, the two applications have the exact same set of

operations therefore the same prediction model is used.

ACKNOWLEDGMENT

This research has been financed by the European Union

through the FP7 ERC IDEAS 308019 NGHCS project, the

Horizon2020 688380 VaVeL project and a 2017 Google Fac-

ulty Research Award.

REFERENCES

[1] N. Panagiotou, N. Zygouras, I. Katakis, D. Gunopulos, N. Zacheilas,
I. Boutsis, V. Kalogeraki, S. Lynch, and B. O’Brien, “Intelligent urban
data monitoring for smart cities,” in Joint European Conference on
Machine Learning and Knowledge Discovery in Databases. Riva del
Garda, Italy: Springer, 2016, pp. 177–192.

[2] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B. Cetin, and
S. Babu, “Starfish: A self-tuning system for big data analytics.” in CIDR,
vol. 11, Asilomar, CA, USA, 2011, pp. 261–272.

[3] N. Zacheilas and V. Kalogeraki, “A pareto-based scheduler for exploring
cost-performance trade-offs for mapreduce workloads,” EURASIP Journal
on Embedded Systems, vol. 2017, no. 1, p. 29, 2017.

[4] ——, “Chess: Cost-effective scheduling across multiple heterogeneous
mapreduce clusters,” in ICAC. Wurtzburg, Germany: IEEE, 2016, pp.
65–74.

[5] N. Zacheilas, V. Kalogeraki, N. Zygouras, N. Panagiotou, and D. Gunopu-
los, “Elastic complex event processing exploiting prediction,” in BigData.
Santa Clara, CA, USA: IEEE, 2015, pp. 213–222.

[6] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimiza-
tion of machine learning algorithms,” in Advances in neural information
processing systems, Lake Tahoe, Nevada, USA, 2012, pp. 2951–2959.

[7] N. Zacheilas, S. Maroulis, and V. Kalogeraki, “Dione: Profiling spark
applications exploiting graph similarity,” in BigData, Boston, USA, 2017.

[8] Z. Zeng, A. K. Tung, J. Wang, J. Feng, and L. Zhou, “Comparing stars:
On approximating graph edit distance,” VLDB, vol. 2, no. 1, pp. 25–36,
2009.

1640

