
City-Scale Map Creation and Updating using GPS
Collections

Chen Chen
Stanford University

cchen86@stanford.edu

Cewu Lu
Stanford University

lucewu@stanford.edu

Qixing Huang
Toyota Technological Institute

at Chicago
huangqx@ttic.edu

Qiang Yang
Hong Kong University of
Science and Technology
qyang@cse.ust.hk

Dimitrios Gunopulos
University of Athens

dg@di.uoa.gr

Leonidas Guibas
Stanford University

guibas@cs.stanford.edu

ABSTRACT
Applications such as autonomous driving or real-time route
recommendations require up-to-date and accurate digital
maps. However, manually creating and updating such maps
is too costly to meet the rising demands. As large collec-
tions of GPS trajectories become widely available, construct-
ing and updating maps using such trajectory collections can
greatly reduce the cost of such maps. Unfortunately, due to
GPS noise and varying trajectory sampling rates, inferring
maps from GPS trajectories can be very challenging. In this
paper, we present a framework to create up-to-date maps
with rich knowledge from GPS trajectory collections. Start-
ing from an unstructured GPS point cloud, we discover road
segments using novel graph-based clustering techniques with
prior knowledge on road design. Based on road segments, we
develop a scale- and orientation-invariant traj-SIFT feature
to localize and recognize junctions using a supervised learn-
ing framework. Maps with rich knowledge are created based
on discovered road segments and junctions. Compared to
state-of-the-art methods, our approach can efficiently con-
struct high-quality maps at city scales from large collections
of GPS trajectories.

Keywords
Map construction; GPS trajectories; traj-SIFT feature

1. INTRODUCTION
The availability of accurate and up-to-date digital maps

is the foundation of many location-based applications, e.g.,
autonomous driving, real-time route suggestion and naviga-
tion, etc. Currently, to build such maps, companies such as
Google, Apple, HERE, TomTom, and OpenStreetMap, etc.,
are spending tremendous amount of efforts to collect data
using specially equipped mapping fleets and to create maps

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

KDD ’16, August 13–17, 2016, San Francisco, CA, USA.
c© 2016 ACM. ISBN 978-1-4503-4232-2/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2939672.2939833

manually from the collected data. Unfortunately, real-world
road networks are subject to change due to construction,
closures, accidents, etc. As a result, newly updated maps
soon become outdated, and it requires significant effort to
keep the maps up-to-date. For example, in 2015, HERE
map reported millions of updates to their map database
around the globe every day [HERE 360, 2015]. Similar
statistics have also been reported by OpenStreetMap [Open-
StreetMap, 2016]. The proliferation of autonomous vehicles
increases demands on the timeliness and accuracy of digital
maps. Clearly, manually creating and updating maps is too
costly and inefficient to meet such a demand, and the devel-
opment of automatic techniques to create maps that reflect
daily changes of the road network is essential.

Today, GPS sensors are widely deployed in mobile plat-
forms such as cars and smart phones. These sensors can
record the moving trajectories of their host vehicles. Mean-
while, the increasing bandwidth over cellular and Wi-Fi net-
work makes it much cheaper to transfer data from these
mobile platforms. Therefore, it is possible to collect a large
amount of up-to-date, sometimes even real-time trajectories.
If high-quality maps can be created and maintained auto-
matically from such GPS trajectory collections, the cost can
be dramatically reduced.

Unfortunately, inferring the underlying geometries and
topologies of road networks from GPS trajectories can be
very challenging for two reasons: First, GPS noise and low
sampling rate induces both spatial and temporal uncertain-
ties. Spatial uncertainties come from the noise of GPS mea-
surements [Kaplan and Hegarty, 2006]. Meanwhile, in order
to minimize energy consumption and data transmission cost,
trajectories recorded by mobile platforms are often sampled
sparsely in time, which leads to temporal uncertainties. Sec-
ond, road network is hierarchical (e.g., highway and local
roads), non-planar (e.g., overhead crossings), and hetero-
geneous (e.g., city road network is often more complicated
than rural areas) [Eppstein and Goodrich, 2008]. Therefore,
there is a large knowledge gap between the map representa-
tion and raw GPS trajectories, and discovering knowledge of
the map from unstructured GPS collections is a challenging
and long-standing problem.

There have been many seminal works on creating and up-
dating maps using collections of GPS trajectories. Most of
the existing methods treat this problem as a clustering prob-

lem: clustering GPS points or sub-trajectories into roads,
and then connecting them to produce a map. Due to the
challenges mentioned above, the maps produced by exist-
ing algorithms are often poor in quality and contain many
unrealistic structures.

In this paper, we present a supervised learning framework
to address the aforementioned challenges. The generated
maps can be used readily for regions that do not have exist-
ing maps, and enable fast updating to existing maps. The
main difference between our method and previous ones is
that our supervised framework allows us to leverage prior
knowledge of real-world road networks, e.g., the most proba-
ble shapes of roads and junctions, into the map construction
workflow. We introduce an intermediate representation, re-
ferred to as road segment representation, as a de-noised rep-
resentation that contains both local and global information
of input GPS trajectories. To generate such a representa-
tion, we develop a traj-meanshift algorithm to denoise the
GPS points, and a novel graph-based road segment clus-
tering algorithm with smoothness prior of real-world roads.
For detecting and classifying junctions, we develop a traj-
SIFT feature resembling SIFT feature (i.e., Scale-invariant
Feature Transform) in the field of computer vision for scale
and rotation invariant junction localization and classifica-
tion. Our traj-SIFT feature keeps the spirit of image SIFT,
but are significantly different due to the large differences
between trajectory and image data. We then train a dis-
criminative model using labeled samples from regions where
we have ground-truth maps. Finally, we combine the dis-
criminative classification score based on traj-SIFT feature
and the likelihood of generative prior junction models for
robust junction recognition.

The major contributions of this paper include:

• a graph-based road segment tracing algorithm to ex-
tract smooth road segments from unstructured GPS
point cloud;

• the introduction of traj-SIFT feature to detect and
classify road junctions into prior models;

• demonstration of efficient city-scale map construction
from collections of GPS trajectories.

2. RELATED WORK
Map construction from GPS trajectories is an active re-

search topic. Existing works can be classified into two cat-
egories: (1) clustering GPS points based on their local sim-
ilarities and (2) clustering sub-trajectories based on path
based distances. Existing methods do not take knowledge
of existing maps into consideration.

Among the first category (i.e., clustering GPS points),
[Edelkamp and Schrödl, 2003] applied k-mean algorithm to
cluster GPS points into cluster centers, which were later
connected to generate road centerlines. [Davies et al., 2006]
computed 2D histogram from GPS points and produced a
map using images rendered from a 2D histogram. [Biagioni
and Eriksson, 2012b] adopted a similar kernel density es-
timation approach and used multiple density thresholds to
produce the output map. The authors also tried to prune
their results by projecting GPS trajectories to their out-
put map. [Cao and Krumm, 2009] clustered GPS points by
moving the points according to simulated attraction and re-
pelling forces. Later, a map was built incrementally from the

clustered GPS points. [Chen et al., 2010] presented a com-
putational geometry based algorithm that clustered GPS
points into “good” segments and links among the segments
with theoretical guarantees. [Wang et al., 2015a] introduced
an efficient topological method that constructed maps from
local density field of GPS points. Although inferring maps
from unstructured GPS points can be efficient and robust
to GPS sampling rate, due to the lack of global information,
this line of approaches suffer from GPS noise, leading to in-
accurate structures in the output maps. In addition, they
cannot handle non-planar structures such as crossover and
underpass, which are common in real road networks.

In contrast to point-based clustering in a local neighbor-
hood, methods in the second category try to cluster trajecto-
ries or sub-trajectories based on path-based similarities. For
example, [Ahmed and Wenk, 2012] proposed an incremental
map construction algorithm using sub-trajectory clustering
based on path Fréchet distances. [Fathi and Krumm, 2010]
trained a junction detector based on sub-trajectories fea-
tures to detect junctions and connected them into a map.
Compared to the first line of approach, sub-trajectory clus-
tering brings global information into map construction. How-
ever, it usually requires more computation and is fragile
when trajectory sampling rate is low.

Our method has significant advantages compared to state-
of-the-art approaches: (i) we use an intermediate represen-
tation, i.e., road segment, to capture both local and global
information in GPS trajectories; and (ii) we use prior knowl-
edges of existing road network, such as road smoothness and
junction types to infer the correct map representations.

On a broader scale, our work falls into the category of
knowledge mining from spatial-temporal data. We are in-
spired by many seminal works in this area. For example,
travel time estimation [Wang et al., 2014]; constructing pop-
ular routes [Wei et al., 2012]; temporal skeletonization on
sequential data [Liu et al., 2014]; location prediction using
mobility data [Wang et al., 2015b]; among others.

3. DATA AND PROBLEM STATEMENT
Raw GPS Trajectories: A GPS trajectory t is a sequence
of GPS measurements {x1, · · · , xn}. In this paper, we as-
sume each GPS measurement xi has five attributes: latitude,
longitude, timestamp, speed, and heading (Table 1). Speed
is the magnitude of the device’s velocity, and heading is the
clock-wise angle of the device’s moving direction with re-
spect to the earth’s true north direction. GPS speed and
heading are usually NOT included in previous works. How-
ever, we include them since most GPS systems record speed
and heading, and in case of absence, they can be estimated
from the trajectory data.

Figure 1 shows an example of GPS trajectories as points
(left) and as line segments (right). Typically, GPS measure-
ments are very noisy: while most of the GPS measurements
are accurate within 15 meters, occasionally the noise level
can exceed 50 meters. In addition to GPS noise, GPS tra-
jectories are often sampled sparsely in time to save battery
and reduce data transmission cost. As a result, consecutive
GPS points in a single trajectory can be far away from each
other (Fig 1 (right)). For example, when sampled at 30-
second intervals, two consecutive GPS measurements for a
car moving at 30 miles per hour can be 400 meters apart.

Despite of GPS noise and varying sampling rate, with
the technical advances in mobile platforms, a large num-

ber of GPS trajectories can be collected with relatively low
cost. For example, for our San Francisco dataset, by collect-
ing cellphone GPS trajectories, we accumulated more than
26,000 GPS trajectories with ∼ 4.5 million GPS points over
a 3-month period. Large amount of data provides opportuni-
ties for map inference and updates using noisy and sparsely
sampled GPS trajectories. However, it also poses significant
challenges to the efficiency of our algorithms.

Table 1: Attributes of each GPS reading xi

Attribute Symbol Description

Latitude lati Latitude.

Longitude loni Longitude.

Timestamp timei

UTC time when the
GPS measurement was
taken.

Speed speedi
The magnitude of the
device’s velocity.

Heading hi

The clock-wise angle
between the moving
direction and the earth’s
true north.

Figure 1: A collection of GPS trajectories. Left:
GPS points color-coded with speeds. Right: GPS
trajectories.

Trajectory Collection (T). We use T = {t1, t2, · · · , tm}
to denote a collection of GPS trajectories. For a GPS point
xi, we use T (xi) to denote its corresponding trajectory.
Map Representation (G). A map is typically represented
by a directed geometric graph G = (V, E), where the vertices
V correspond to geo-locations in the road network and the
directional edges E represent the connections between differ-
ent vertices. Figure 2 shows an example map of a 4-way junc-
tion. Although such a graph representation is good enough
for navigation, it loses high-order information such as the
junction structures. For example, it is hard to tell from G
which subset of nodes corresponds to a 4-way junction. In
addition to a map represented as a graph, our method labels
the junctions according to their junction types.

Figure 2: Map representation of a 4-way junction.

4. APPROACH
There are two major steps in our framework: (1) generate

a “road segment” representation from GPS trajectories; and
(2) detect and classify junctions. The junctions are later
connected together to generate the output map. The fol-
lowing subsections present the details for each of the steps.

4.1 Road Segment Representation
Since raw GPS trajectories are noisy and redundant, it

is more convenient to work with road segments extracted
from raw GPS data. As an abstract representation, road
segments reduce uncertainties from raw GPS data and are
closer to our desired map representation. In this section, we
introduce a Road Segment Representation which summarizes
both local and global information of trajectory collections.

To trace road segments from GPS trajectories, one might
think of a näıve approach that treats each trajectory as a
road segment. Unfortunately, this does not work because
even with very accurate GPS measurements, GPS trajecto-
ries are often sampled sparsely in time. Therefore, consecu-
tive GPS points in a single trajectory can be far away from
each other (Fig. 1 right). Such large distance gaps prevent
us from using trajectories as road segments directly.

Another line of approach adopted by many existing works
traces road segments by clustering unstructured GPS point
cloud. The basic observation is that even though each tra-
jectory is sparse, because a road can be traversed by many
cars over a period of time, the collective GPS point cloud
is usually dense. In addition, clustering GPS points from
multiple trajectories in a local neighborhood also removes
extreme noisy outliers. However, real road networks often
have structures that are close to each other (i.e., within GPS
noise range). Therefore, tracing road segments by clustering
points often fail to distinguish such detailed structures.

In this work, we adopt road segment tracing from un-
structured GPS point cloud. However, different from pre-
vious works, we observe that roads cannot have arbitrary
curves. When designing road network, roads are often de-
signed to be as smooth as possible to minimize sharp turns.
With this prior knowledge, we introduce traj-meanshift and
a graph-based clustering algorithm to trace more realistic
road segments from GPS point cloud. Our algorithm en-
courages the samples to lie on road centerlines and generate
road segments that are as smooth as possible. Finally, since
tracing road segments from local GPS points loses global
information from raw GPS trajectories, we add links that
reflect transitions among road segments by mapping input
GPS trajectories to the road segments.

4.1.1 Traj-Meanshift Sampling
Looking at raw GPS points, many points deviate from

road centerlines due to GPS noise. Since our goal is to trace
road segments, we would like to keep only the samples that
lie on road centerlines as much as possible. Typically, road
centerlines have higher point density as shown in Fig. 3.
Hence, we design our traj-meanshift algorithm that borrows
the idea of mean-shift filter to extract a subset of samples
from the original GPS point cloud according to GPS loca-
tion, speed and heading.

More specifically, we denote the original GPS points cloud
as X =

⋃
i{x | x ∈ ti, ti ∈ T }, and extract a set of samples

from X , denoted by S, to summarize the raw GPS point
cloud. Similar to a GPS point, each sample si has the fol-

lowing attributes: location, average speed, and heading. In
addition, each sample si ∈ S also has a weight wi, recording
the number of nearby similar GPS points (in terms of speed
and heading) covered by si. To obtain such S, we gener-
ate new samples iteratively in order to “cover” the original
GPS point cloud, i.e., each GPS point xi is associated with
a sample sj in S. At each iteration, we randomly select
an uncovered GPS point xi and search for a new sample si
around xi that most likely lies on a road center line. To find
the location of si, we project nearby GPS points of xi into
a histogram that is perpendicular to xi’s moving direction,
and the road center of xi corresponds to the peak location of
such 1D histogram. This 1D histogram is computed by col-
lecting votes from xi’s neighbor points xj ∈ Ω(xi) (Fig. 3b).
The voting value from each neighbor point xj should reflect
the similarity between xi and xj . For example, ss shown in
Fig. 3b, for bin k, the vote from xj will be computed by the
following equation:

g(xi, k) =

∑
xj∈Ω(xi)

I(Bin(xj), k)e
−

∆2
heading(xi,xj)

σ2
h · e

−
∆2

speed(xi,xj)

σ2
s

∑
xj∈Ω(xi)

e
−

∆2
heading

(xi,xj)

σ2
h · e

−
∆2

speed
(xi,xj)

σ2
s

,

(1)
where σh and σs are two parameters and I(Bin(xj), k) is an
indicator function that outputs 1 if xj falls in kth bin and 0
otherwise. The corresponding sample si of xi is located at
the peak location of xi’s 1D histogram with respect to xi’s
heading direction. We set si’s heading equal to h(xi), and
covers consistent GPS points in Ω(si) and add si into S.

Figure 3: Illustration of GPS point cloud sampling.
(a) Determine sample location around a randomly
selected GPS point xi. (b) Nearby GPS point xj
votes to the corresponding histogram bin of xi ac-
cording to Eqn. (1).

4.1.2 Graph-based Road Segments Clustering
As stated earlier, tracing road segments can be consid-

ered as clustering the samples S. In this section we develop
a graph-based clustering method which leverages the prior
knowledge that road segments should be locally smooth.

With the sample set S, we initialize an undirected graph
M with vertices being S. We add edges incrementally to
M to connect the vertices into segments. Each output road
segment corresponds to a connected component of M that
is longer than a minimum length Lmin.

The following describes how we add edges to the undi-
rected graph M. We process one vertex (i.e., sample point
si) at a time in descending order according to their weights.
When processing si, we pick two best vertices sp and sq
near si and add edges (sp, si) and (sq, si) into M such that
sp → si → sq forms a smooth local segment (Fig. 4).

We pick sp from the neighbors of si based on the following
conditions:

• d(sp, si) is smaller than a threshold R

• ∆heading(L(si) − L(sp),h(si)) and ∆heading(sp, si) are
both smaller than a threshold θh

• degreeM(sp) < 2

The first condition is to make sure sp is close to si. In the
second condition, L(si) − L(sp) is the vector from sample
location sp to si. Therefore, the second condition ensures
vehicles to move from sp to si without abrupt turning. The
third condition ensures no vertex inM can have more than
three edges such that each connected component of M is a
line segment.

When more than one candidates of sp are available, we
pick the one with maximum score computed by the following
equation:

score(sp | si) =

||L(si), L(s)p|| ·∆heading(L(si)− L(sp), si) ·∆heading(sp, si).
(2)

This scoring function favors smooth connection between si
and sp according to their heading directions. If there is no
candidate available, no edge will be added to M.

We use a similar procedure to find sq, only in this case we
use ∆heading(L(s)−L(si),h(si)) in the second condition. Fi-
nally, each connected component ofM that is longer than a
minimum length Lmin corresponds to a road segment. This
algorithm can find road segments from S in O(S) time.
Smoothing Road Segments. Due to GPS noise and ar-
tifacts introduced by sampling, a smoothing step is needed
to make the previously extracted road segments more re-
alistic. Since each previously extracted road segments is a
line segment with multiple sample points: {s1, s2, · · · }, and
each sample has location and heading attributes, we use the
following optimization to smooth each road segment:

min
si′

∑
i

{||si′ − si||2+

1

2
[(dot(n(si), si

′ − si−1
′))2 + (dot(n(si), si

′ − si+1
′))2]},

where n(si) is the normal direction of si (i.e., rotate h(si)
by 90◦ counter-clockwise), (si

′ − si−1
′) and (si

′ − si+1
′) are

two vectors of adjacent samples on the road segment. This
quadratic objective function has closed-form solution, and
can be easily obtained by solving a small linear system.

4.1.3 Inferring Links among Road Segments
The previously extracted road segments are computed en-

tirely base on unstructured GPS point cloud. As a result,
global information, such as the transitions among road seg-
ments, is left out from the input GPS trajectories. In order
to capture such high-order information, we infer links among
previously extracted road segments using input GPS trajec-
tories. More specifically, for each trajectory ti, we search
its nearby road segments R(ti). From R(ti), we compute
a minimum sequence of road segments ri1 → ri2 → · · · rik
that “covers” ti. As illustrated in Fig. 5a, each nearby seg-
ment covers a portion of ti and we can select a minimum
sequence of road segments that covers ti. Computing such
a minimum sequence is very similar to matching GPS tra-
jectories to an underlying map, and one can find an efficient
dynamic programming algorithm in [Goh et al., 2012].

After each trajectory is mapped to a sequence of road
segments, we add a link for each pair of consecutive road

Figure 4: Illustration of our graph-based road segment tracing algorithm.

segments. For example, if ti is mapped to ri1 → ri2 →
· · · rik , we add link lk : rik → rik+1 for each consecutive
pair of segments in this sequence. Collecting links from all
trajectories, we get a collection of links L = {l1, l2, · · · }, and
each link is of the form li = (rs → rt : wi), where rs and
rt are the source and destination road segments, and wi is
the weight of li, recording the number of trajectories that
support this link. Figure 5b shows an example of such link
collection with each link marked in red.

Figure 5: Computing links among road segments.
(a) Mapping trajectory ti to a minimum sequence of
nearby segments (ri1 → ri2 → ri3). (b) The computed
links among road segments.

4.2 Junction Detection and Recognition
Junction detection and recognition are crucial for road

map construction. Detecting and recognizing junctions is
a problem similar to object recognition in computer vision
and faces similar challenges: junctions in a road network
can have different size, orientation, and deformation, mak-
ing them hard to be detected and classified. Inspired by the
famous Scale-invariant Feature Transform (SIFT) feature
[Lowe, 2004], which is widely used and proves to be robust in
computer vision, we develop the trajectory SIFT (traj-SIFT)
method that automatically detects junction scale and gener-
ates an orientation-invariant descriptor for junction classifi-
cation. To make the junction classification more robust, we
build a set of prior junction models for each junction class,
and compute the likelihood of each junction model by fitting
nearby road segments to the junction model. Our unified
model combines both discriminative classification score and
prior model likelihood for more accurate classification.
Setting. Most road junctions are designed in standard
shapes such as Y-shape, T-shape, Cross-shape, and Star-
shape. Complicated road junctions, such as local-highway
junctions, can be decomposed into several of these simple
junction shapes. In this paper, we use four model classes:

Y-shape, T-shape, Cross-shape and Star-shape junctions.
However, to adapt to their local environments, junctions
often have deformed geometry, making it difficult to deter-
mine which class the junction belongs to. Fortunately, we
can extract training data with ground-truth label from re-
gions that have ground-truth map.

4.2.1 Traj-SIFT for Discriminative Learning
In this section we describe our novel traj-SIFT feature for

junction classification. The traj-SIFT feature is extracted
from the previously described intermediate representation,
i.e., road segment (R) and links (L). Since trajectory data
is different from image data, the standard SIFT is not useful
in our case. Our traj-SIFT extends the idea of image SIFT
to trajectory data. We observe that road segment headings
resemble image gradients. The design of traj-SIFT feature
uses this observation; we describe it in the following subsec-
tions.
Key Point Localization. Prior to junction recognition,
we need to locate potential junction regions as key points.
In image SIFT [Lowe, 2004], key points are extracted at lo-
cations with non-uniform gradient orientations, since points
inside uniform gradient regions (e.g., inner points of a line or
a smooth surface) do not convey discriminative information.
We develop a trajectory bilateral filter to detect candidate
junction locations. More specifically, for each road segment
point, we compute a score that summarizes the heading dif-
ferences between the road segment point and its neighbors:

score(ri) =

∑
||rj−ri||≤R

exp(−∆2
h(h(ri),h(rj))

σ2
h

) · exp(− ||ri−rj ||
2

σ2
d

)

∑
||rj−ri||≤R

exp(− ||ri−rj ||
2

σ2
d

)
.

Intuitively, this score is a weighted average of the heading
differences between the selected road segment point ri and
its neighbor road segment points within radius R. Hence,
potential junction locations with non-uniform heading dis-
tributions should have smaller score. We extract such loca-
tions by detecting the local minimum from the entire set of
road segment points based on their scores (Fig. 6d).
Automatic Scale Estimation. As stated earlier, road
junctions can have different sizes depending on their local
environments. Therefore, we need to estimate the scale for
each detected key point. In analogy to Difference of Gaus-
sian (DoG) in image SIFT, we design a set of concentric bins
with increasing radius (Fig. 6a) and compute the heading
distribution of road segment points inside each bin. Within
a junction region, the difference of the heading distributions
between two consecutive bins (measured by L2-norm) should
be small; and when a bin approaches the boundary of a junc-
tion, there would be a big jump in the heading distribution
difference. In practice, we use N(= 10) concentric bins,

and the radius of the circles increases from Rmin(= 50m) to
Rmax(= 150m). We compute the heading histogram of road
segment points inside each bin using 36 angle bins. The dif-
ference vector between consecutive heading histograms can
be computed as D(i) = ‖hist(i)− hist(i− 1)‖2. The scale
of a key point can be determined as the center of the bin
corresponding to the first maximum value of D (Fig. 6b, d).

Figure 6: Automatic scale estimation using concen-
tric bins (a) to detect scale by monitoring the head-
ing distribution differences (b). (c) Illustration of
traj-SIFT descriptor. (d) Interesting point detec-
tion using a bilateral filter. The SIFT scale for each
interesting point is marked with a red circle.

traj-SIFT Descriptor. Once the scale is determined, we
compute the heading distributions for all nearby road seg-
ment points within this scale. We pick the peak heading di-
rection as the canonical direction to make extracted descrip-
tor orientation-invariant. Similar to image SIFT feature, we
divide the region near the query location into 4 × 4 = 16
subregions, and within each subregion, we compute head-
ing distributions of road segment points (aligned with the
canonical direction) using a 8-bin histogram (Fig. 6c). We
train a multi-class SVM based on their traj-SIFT descrip-
tors to classify them into corresponding junction classes (i.e.,
Y-shape, T-shape, Cross-shape and Star-shape junctions).

4.2.2 Junction Fitting by Generative Prior
The traj-SIFT descriptor is computed based on local road

segment heading distributions. We find that it cannot ef-
fectively distinguish models that have similar shapes. For
example, a T-shape junction and a Cross-shape junction
may have very similar shapes, and our traj-SIFT descrip-
tors have difficulties in distinguishing similar junctions. To
make the classifier more accurate, we introduce generative
prior junction models. For each junction type, we build a set
of candidate models of various shapes cropped from existing
OpenStreetMap as prior junction models. In our implemen-
tation, we use 20 prior models for Y-shape junctions, 10 for
T-shape, 10 for Cross-shape, and 7 for Star-shape junctions
(Fig. 7). Of course, more comprehensive prior junction mod-
els will lead to more accurate classification results, but will
increase the computation cost due to model fitting. Given a
junction key point (with estimated scale), we fit each prior

junction model to the nearby road segment points. The
links among nearby road segments determine the topology
of the junction model. Fitting error ε is measured by the av-
erage geometric distances between road segment points and
their closest junction model points. The likelihood of a prior
model being the correct one is computed by e−ε/σd , where
σd is a parameter.

Figure 7: Prior junction models for the four junction
classes.

4.2.3 Unified Model.
Finally, our unified model combines the score of the dis-

criminative model (learned from training samples based on
traj-SIFT descriptors) and the likelihood of prior junction
model. For the discriminative model, we train a multi-class
SVM based on the traj-SIFT descriptors using training sam-
ples with ground-truth junction type labels. For each junc-
tion key point, we also fit all potential prior junction models
and compute the likelihood of each prior junction model.
The final class of the junction key point is determined by:

arg max
i

{d(J = i) + λg(J = i)}, (3)

where i corresponds to the junction class type. d(J = i) is
the predicted probability from the trained multi-class SVM
that current junction belongs to class i. g(J = i) = maxj p(J =
modelij) corresponds to the maximum likelihood for all the
prior models within class i. λ is a tuning parameter, which
is determined by cross-validation.

5. EMPIRICAL EVALUATION
In this section, we verify the effectiveness of our method

in map creation and update.

5.1 Dataset and Settings
We introduce three datasets for evaluation. The first two

datasets are used for evaluating our constructed maps and
comparing with previous works. The last dataset is for
demonstrating the usefulness of our generated maps in up-
dating existing maps. We use OpenStreetMap as our ref-
erence map in our evaluations due to its public availability
([OpenStreetMap, 2016]).
San Francisco Dataset. Our San Francisco dataset was
collected by our industry collaborators, which consists of a
large number of cellphone GPS trajectories collected when
the users were using their cellphones for navigation. The
dataset was collected in 2013. The average trajectory sam-
pling rate of this dataset is ∼ 1pt/sec. There are a total of
26, 316 trajectories, and ∼ 4.5 million GPS points.
Chicago Dataset. This is a relatively small dataset with
889 bus trajectories and 117, 672 GPS points introduced by
([Biagioni and Eriksson, 2012b]). Due to the lack of speed
and heading information in this dataset, we infer speed and

heading by differentiating consecutive GPS points in each
GPS trajectories.
Map Update Dataset. Our constructed maps can also
be used for detecting changes in the road network to up-
date existing maps. Unfortunately, since our San Francisco
dataset was collected in 2013, we couldn’t detect latest road
changes since 2013. However, the principle of map updat-
ing stays the same: by comparing our generated map and
the current map, we can identify locations the two maps do
not match. If up-to-date GPS trajectories are used for map
generation, such conflation results can be used to generate
map updates. Luckily, we found Google earth satellite im-
ages in San Francisco captured around the time period our
trajectory was collected. We “pretend” that Google Earth
to be the ground-truth map and see if our generated map
can be used to detect the required changes to the Open-
StreetMap we have. To do so, we overlay the most recent
OpenStreetMap on top of Google earth satellite images, and
identified five regions where there are inconsistencies. We
randomly sampled 100 locations from each region, and man-
ually determined whether OpenStreetMap is consistent with
Google Earth at each sample location. The final map update
dataset contains 500 sample locations, and each sample lo-
cation has a label of 1 if OpenStreetMap is inconsistent with
Google Earth satellite image, and 0 if otherwise.

5.2 Evaluation of Output Maps
In this section, we evaluate the quality of the maps gen-

erated by our framework using both San Francisco dataset
and Chicago dataset.

5.2.1 Chicago Dataset
Since this is a small dataset, visual comparison is enough

to tell the quality differences of the output maps. Figure 8a
shows the result produced by [Biagioni and Eriksson, 2012b].
The authors of [Biagioni and Eriksson, 2012b] generated the
map using an image-based skeleton extraction method from
blurred GPS point images. As shown in Fig. 8a, due to GPS
noises, the output map from [Biagioni and Eriksson, 2012b]
contains many unrealistic roads and junctions. Our method
produces a much more realistic map (Fig. 8b).

Figure 8: Comparison of our method with [Biagioni
and Eriksson, 2012b] using Chicago dataset.

5.2.2 San Francisco Dataset
We use three metrics to evaluate the accuracy of our gener-

ated map on San Francisco dataset: (i) Precision and Recall
(as proposed by [Biagioni and Eriksson, 2012a]), (ii) Tra-
jectory Explanation Rate, and (iii) Trajectory Realization
and Haustorff distances. We also give a visual comparison
between our method and [Biagioni and Eriksson, 2012b] on
a small region in San Francisco.

Fig. 9 shows our generated map using our San Francisco
data. The map produced by our algorithm is visually close
to OpenStreetMap. The only difference is that in our map,

a two-way road has separable two moving directions (as re-
flected by GPS data). However, since OpenStreetMap is
built manually, the two directions of a two-way road are
usually merged as a single bi-directional edge to simplify
geometry. In addition to the output map as a graph, our
method also extract high-order knowledge of each junction
type, which is color-coded in Fig. 9.

Figure 9: Example constructed maps using San
Francisco dataset.
Precision and Recall. We evaluate our constructed map
using the method introduced by [Biagioni and Eriksson,
2012a] to compute precision, recall and F-score. The method
in [Biagioni and Eriksson, 2012a] evaluates both the topolo-
gies and geometries of the generated maps. Given our gen-
erated map G and the corresponding OpenStreetMap G0,
multiple random locations are selected as starting points.
At each starting point p, a DFS search from p is conducted
on both G and G0. “marbles” are dropped at fixed intervals
when traversing G, and“holes”are dropped at fixed intervals
when traversing G0 until a maximum radius r is reached. If
a “marble” is close to a “hole” within a matching threshold
d, the “marble” matches to the “hole.” The precision, recall
and F-score are defined as follows:

precision =
matched marbles

total marbles

recall =
matched holes

total holes

F = 2 · precision · recall
precision+ recall

.

We randomly pick 1% of the GPS points as the starting
locations. We fix r = 100m and vary d from 5m to 30m.
Fig. 10 shows the results on our San Francisco dataset. The
high precision and recall score proves that our generated
maps are very close to the reference OpenStreetMap.
Trajectory Explanation Rate. Since our output map is
generated by a collection of input GPS trajectories, we ex-
pect to be able to project each input trajectory to a path on
our generated map. However, in real scenarios, our meth-
ods could fail to generate road segments for roads that are
sparsely traversed. Our method may also fail to infer connec-
tions at a junction region when the corresponding turnings

are rarely traversed. As a result, we may have input trajec-
tories that could not be projected to paths on our generated
map. To evaluate the coverage of our map on input trajec-
tories, we define Trajectory Explanation Rate as the percent-
age of input GPS trajectories that can be projected as paths
on a reference map. We use a simple online map-matching
algorithm in [Goh et al., 2012] to project the input trajecto-
ries to a map. We compare the trajectory explanation rates
of our map to OpenStreetMap. As shown in Fig. 11, on
our San Francisco dataset, our constructed map can explain
∼ 89% of the input trajectories.

Figure 10: Precision / recall and F-score.

Figure 11: Trajectory explanation rates on San
Francisco dataset.

Trajectory Realization and Haustorff distances. We
are aware of other path-based map comparison methods.
For example, comparing Hausdorff distances between short-
est paths among randomly selected source and destination
location pairs suggested by[Ahmed et al., 2014]. However,
since we are only interested in the map structures that are
traversed by GPS trajectories, we compare the Hausdorff
distance between map-matched GPS trajectories to our map
and to the reference OpenStreetMap. More specifically, for
each input GPS trajectory ti, we project it to both our map
and OpenStreetMap as two corresponding paths pG(ti) and
pG0(ti). Hausdorff distances between pG(ti) and pG0(ti) is
computed by

dH(pG(ti), pG0(ti))

= max{ sup
x∈pG(ti)

inf
y∈pG0

d(x, y), sup
x∈pG0

(ti)

inf
y∈pG

d(x, y)}.

We only consider trajectories that can be explained by both
maps (which corresponds to ∼ 80% of the input trajecto-
ries). The comparison results are shown in Fig. 12. For
those trajectories that can be explained by both maps, the
Hausdorff distances between their map-matched paths to our

map and OpenStreetMap are less than 50 meters, which are
smaller than the majority GPS noise level.

Figure 12: Distribution of Hausdorff distances be-
tween map-matched paths to our map and to the
reference OpenStreetMap.
Visual Comparison with Previous Works. We select a
small region in San Francisco, and compare our result with
that produced by [Biagioni and Eriksson, 2012b] (Fig. 13).
Since this is a larger region with more complicated road
structures compared to Chicago dataset, there are more un-
realistic structures in the output map using method from
[Biagioni and Eriksson, 2012b]. Our method is stable and
generates high-quality results.

Figure 13: Comparison of our method with [Bia-
gioni and Eriksson, 2012b] in a small region in San
Francisco.

5.2.3 Map Update Dataset
As described earlier, our map update dataset contains 500

sample locations with ground-truth being Google Earth. For
those locations where OpenStreetMap is inconsistent with
Google Earth, we check if our generated map covered the
desired updates. Overall, we find that 95% of the inconsis-
tent locations are covered by our generated map. Figure 14
shows two examples of such cases along with the ground-
truth satellite images from Google Earth.

5.3 Analysis
We provide in-depth analysis of our method in the fol-

lowing sections. We provide analysis on the effectiveness of
our traj-SIFT feature and our unified junction classification
model. The stability of our framework with respect to GPS
sampling rate and input data is also included.

5.3.1 traj-SIFT Feature Analysis
We extracted ∼ 300 junctions in the city of San Francisco

with ground-truth junction labels. At each junction loca-
tion, a traj-SIFT feature is extracted from the road segment
representation computed from input GPS trajectories.
Without Prior Model Likelihood. We first test the
classification accuracy using only the 128-dimensional traj-

SIFT descriptors. More specifically, we use 70% of the sam-
ples to train a multi-class SVM classifier [Chang and Lin,
2011]. The remaining 30% samples are used for testing. Ta-
ble 2 shows the confusion matrix of the multi-class SVM on
testing data. The SVM sometimes mis-classifies T-shape to
Cross-shape junctions, and Star-shape to Cross-shape junc-
tions. This is because such structures sometimes are difficult
to separate when having similar shapes.

Figure 14: Identified regions where OpenStreetMap
does not agree with our generated map. The satel-
lite image aligned with GPS points are shown at the
bottom.

Table 2: Multi-class SVM Confusion matrix using
only traj-SIFT descriptor.

Prediction
Y T Cross Star

T
ru

th

Y 0.86 0.09 0.05 0.0
T 0.19 0.34 0.44 0.03

Cross 0.03 0.18 0.78 0.01
Star 0.13 0.0 0.47 0.4

With Prior Model Likelihood. In addition to the dis-
criminative SVM prediction score, our unified model com-
bines the discriminative prediction score with the likelihood
of each prior junction model (Eqn. 3). As shown in Table 3,
such an unified model performs much better than using only
a multi-class SVM.

Table 3: Confusion Matrix of our unified model
(Eqn. 3)

Prediction
Y T Cross Star

T
ru

th

Y 0.91 0.09 0.0 0.0
T 0.08 0.86 0.06 0.0

Cross 0.0 0.0 0.98 0.02
Star 0.0 0.0 0.09 0.91

Comparison with Image SIFT. We introduce traj-SIFT
feature for junction localization and prediction based on in-
sights from image SIFT feature. An naive approach is to
render the GPS trajectories as blurred images, and extract
image SIFT feature directly to classify junctions. Table 4
shows the confusion matrix using such an approach. The
results are much worse than using our traj-SIFT features.

Table 4: Multi-class SVM confusion matrix using
naive image SIFT descriptors.

Prediction
Y T Cross Star

T
ru

th

Y 0.40 0.34 0.16 0.10
T 0.47 0.26 0.15 0.12

Cross 0.23 0.11 0.37 0.29
Star 0.18 0.07 0.27 0.48

5.3.2 Stability Analysis
Sensitivity to Input Data. To test the stability of our
framework under different input data, we extracted a small
region from our San Francisco dataset. We further divided
the trajectories into two part, and Fig. 15 shows the output
maps using only half of the data. As we can see from Fig. 15,
the majority of the map structures are stable under different
input data. However, sparsely traversed roads are not stable
since they may not be covered using just part of the data. If
a road is sufficiently covered, our method produce consistent
results under different input.

Figure 15: Stability test using different sub-parts of
the original input data.

Sensitivity to Sampling Rate. Another type of uncer-
tainties comes from the varying sampling rate of input tra-
jectories. We pick a small 4-way junction, and sub-sample
the original trajectories to generate lower sampling rate tra-
jectories. Figure 16 shows the results of using trajecto-
ries with different sampling rates. Since we are only sub-
sampling the original GPS trajectories, the total number of
GPS points remains the same. Therefore, the main junction
structures are stable, as our road segment tracing algorithm
mainly relies on GPS points. However, when sampling rate
drops to a very low level, we cannot identify some connec-
tions in the junction. In the extreme case (Fig 16d), the
input is virtually a GPS point cloud. Therefore, our algo-
rithm inferred a non-planar crossing for this junction.

5.4 Running Time
We test our algorithms on a Macbook Pro 2013 with

2.4GHz Intel Core i7 and 8GB memory. Table 5 shows the
running time of our algorithm on the San Francisco dataset.
The total running time is less than 5 minutes. With opti-
mizations such as parallel computing, we believe our work-
flow can speed up to near real-time.

6. CONCLUSION
In this paper, we present an efficient framework to cre-

ate maps form GPS collections. The generated maps can be
used in regions that do not have existing maps. They are
also helpful in identifying changes and generating updates
to existing map database. The key idea of our method is
to leverage prior knowledge on the structure of a road net-

Figure 16: Sensitivity analysis with varying sam-
pling rate.

Table 5: Running Time on San Francisco Dataset
(4, 474, 167 GPS points).

Description Value
#GPS Points 4, 474, 167
#Trajectories 26, 316

Compute road segment representation 49.7 sec
Interesting point detection < 2 sec

Junction classification and model fitting < 3 min
Total running time < 5 min

work to minimize uncertainties from GPS trajectories. We
introduce a novel graph-based algorithm to trace road seg-
ments from GPS trajectories as an intermediate represen-
tation. Such an intermediate representation captures both
local and global information of noisy input GPS trajecto-
ries. To detect and classify junctions, we design a scale-
and orientation-invariant traj-SIFT feature, and introduce
an unified classification model that combines the discrimi-
native prediction score and the likelihood of prior junction
models. Compared to existing state-of-the-art methods, our
method produces high-quality maps, and is scalable to large
city-scale dataset with millions of GPS points.

7. ACKNOWLEDGEMENTS
The US authors acknowledge the support of of NSF grants

DMS-1228304 and CCF-1514305, a Google Research Award,
and the Max Planck Center for Visual Computing and Com-
munication. We also acknowledge support to D. Gunop-
ulos from the European Union Horizon 2020 Programme
(Horizon2020/2014-2020), under grant agreement VaVeL n◦

688380 and by the INSIGHT FP7-318225 EU funded project.

8. REFERENCES
[Ahmed et al., 2014] Ahmed, M., Karagiorgou, S., Pfoser,

D., and Wenk, C. (2014). A comparison and evaluation
of map construction algorithms. CoRR, abs/1402.5138.

[Ahmed and Wenk, 2012] Ahmed, M. and Wenk, C.
(2012). Constructing street networks from gps
trajectories. In Epstein, L. and Ferragina, P., editors,
Algorithms ESA 2012, pages 60–71.

[Biagioni and Eriksson, 2012a] Biagioni, J. and Eriksson,
J. (2012a). Inferring road maps from gps traces: Survey
and comparative evaluation. In Transportation Research
Board, 91st Annual.

[Biagioni and Eriksson, 2012b] Biagioni, J. and Eriksson,
J. (2012b). Map inference in the face of noise and
disparity. ACM SIGSPATIAL ’12, pages 79–88.

[Cao and Krumm, 2009] Cao, L. and Krumm, J. (2009).
From gps traces to a routable road map. ACM
SIGSPATIAL ’09, pages 3–12.

[Chang and Lin, 2011] Chang, C.-C. and Lin, C.-J. (2011).
LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology.

[Chen et al., 2010] Chen, D., Guibas, L. J., Hershberger,
J., and Sun, J. (2010). Road network reconstruction for
organizing paths. SODA ’10, pages 1309–1320.

[Davies et al., 2006] Davies, J., Beresford, A., and Hopper,
A. (2006). Scalable, distributed, real-time map
generation. Pervasive Computing, IEEE, 5(4):47–54.

[Edelkamp and Schrödl, 2003] Edelkamp, S. and Schrödl,
S. (2003). Computer Science in Perspective: Essays
Dedicated to Thomas Ottmann, pages 128–151. Springer
Berlin Heidelberg, Berlin, Heidelberg.

[Eppstein and Goodrich, 2008] Eppstein, D. and Goodrich,
M. T. (2008). Studying (non-planar) road networks
through an algorithmic lens. ACM SIGSPATIAL ’08.

[Fathi and Krumm, 2010] Fathi, A. and Krumm, J. (2010).
Detecting road intersections from gps traces.
GIScience’10, pages 56–69, Berlin, Heidelberg.

[Goh et al., 2012] Goh, C., Dauwels, J., Mitrovic, N., Asif,
M., Oran, A., and Jaillet, P. (2012). Online
map-matching based on hidden markov model for
real-time traffic sensing applications. In ITSC, pages
776–781.

[HERE 360, 2015] HERE 360 (2015). the official here blog.
http://360.here.com/2015/06/04/what-do-android-ios-
and-wp-here-maps-update/.

[Kaplan and Hegarty, 2006] Kaplan, E. and Hegarty, C.
(2006). Understanding GPS: Principles and Applications.
Artech House mobile communications series.

[Liu et al., 2014] Liu, C., Zhang, K., Xiong, H., Jiang, G.,
and Yang, Q. (2014). Temporal skeletonization on
sequential data: Patterns, categorization, and
visualization. KDD ’14, pages 1336–1345.

[Lowe, 2004] Lowe, D. G. (2004). Distinctive image
features from scale-invariant keypoints. Int. J. Comput.
Vision, 60(2):91–110.

[OpenStreetMap, 2016] OpenStreetMap (2016).
http://openstreetmap.org.

[Wang et al., 2015a] Wang, S., Wang, Y., and Li, Y.
(2015a). Efficient map reconstruction and augmentation
via topological methods. In Proceedings of the 23th
International Conference on Advances in Geographic
Information Systems.

[Wang et al., 2015b] Wang, Y., Yuan, N. J., Lian, D., Xu,
L., Xie, X., Chen, E., and Rui, Y. (2015b). Regularity
and conformity: Location prediction using heterogeneous
mobility data. KDD ’15, pages 1275–1284. ACM.

[Wang et al., 2014] Wang, Y., Zheng, Y., and Xue, Y.
(2014). Travel time estimation of a path using sparse
trajectories. In KDD ’14. ACM.

[Wei et al., 2012] Wei, L.-Y., Zheng, Y., and Peng, W.-C.
(2012). Constructing popular routes from uncertain
trajectories. KDD ’12. ACM.

